
Algorithms: Divide-and-Conquer (Merge-Sort)

Alessandro Chiesa, Ola Svensson

School of Computer and Communication Sciences

Lecture 3, 25.02.2025

Recall Last Lecture: Loop Invariant
Often used for proof of correctness in presence of loops

Loop invariant = “a statement that is satisfied during the loop”
Ex: At the start of each iteration ans = (i − 1) ∗ i/2

Need to verify (similar to induction)

Initialization: True at the beginning of the 1st iteration of the loop

Maintenance: If it is true before an iteration of the loop, it remains true
before the next iteration.

Termination: When the loop terminates, the invariant — usually along
with the reason that the loop terminated — gives us a useful property
that helps show that the algorithm is correct.

Lecture 3, 25.02.2025

CalculateSum(n):
1. ans = 0
2. for i = 1, 2, . . . , n
3. ans = ans + i
4. return ans

Recall Last Lecture: Loop Invariant
The difficulty is often to come up with the right loop invariant

Lecture 3, 25.02.2025

Recall Last Lecture: Loop Invariant
The difficulty is often to come up with the right loop invariant

Lecture 3, 25.02.2025

Recall Last Lecture: Loop Invariant
The difficulty is often to come up with the right loop invariant

Loop invariant:

At the start of each iteration of the “outer” for loop – the loop
indexed by j– the subarrary A[1 . . . , j − 1] consists of the elements
originally in A[1, . . . , j − 1] but in sorted order.

Lecture 3, 25.02.2025

Recall Last Lecture: Loop Invariant
The difficulty is often to come up with the right loop invariant

Linear-Search(A,v)
1 for i ← 1 to length(A)
2 if A[i] = v then
3 return i
4 return NIL

Lecture 3, 25.02.2025

Recall Last Lecture: Loop Invariant
The difficulty is often to come up with the right loop invariant

Linear-Search(A,v)
1 for i ← 1 to length(A)
2 if A[i] = v then
3 return i
4 return NIL

Loop invariant:

At the start of each iteration of the for loop we have A[j] , v for all
j < i .

Lecture 3, 25.02.2025

Recall Last Lecture: Time Analysis
Random-access machine (RAM) model
▶ Instructions are executed one after another

▶ Simplification basic instructions take constant (O(1)) time
▶ Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
▶ Data movement: load, store, copy.
▶ Control: conditional/unconditional branch, subroutine call and return

Running time: on a particular input, it is the number of primitive
operations (steps) executed

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Order of growth: Focus on the important features
▶ Drop lower-order terms
▶ Ignore the constant coefficient in the leading term

Lecture 3, 25.02.2025

Recall Last Lecture: Analysis of insertion sort
number of times
line executed
based on the
value of j

Worst case: The array is in reverse sorted

T (n) = c1n + c2(n − 1) + c4(n − 1) + c5
n(n + 1) − 2

2

+ (c6 + c7)n · (n − 1)
2 + c8(n − 1) = Θ(n2)

Lecture 3, 25.02.2025

DIVIDE-AND-CONQUER
Merge Sort

Lecture 3, 25.02.2025

DIVIDE-AND-CONQUER
Merge Sort

Lecture 3, 25.02.2025

DIVIDE-AND-CONQUER
Merge Sort

Lecture 3, 25.02.2025

DIVIDE-AND-CONQUER
Merge Sort

Lecture 3, 25.02.2025

Divide-and-Conquer
Powerful algorithmic approach:

recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Combine the subproblem solutions to give a solution to the original
problem

Lecture 3, 25.02.2025

Divide-and-Conquer
Powerful algorithmic approach:

recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Combine the subproblem solutions to give a solution to the original
problem

Lecture 3, 25.02.2025

Divide-and-Conquer
Powerful algorithmic approach:

recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Combine the subproblem solutions to give a solution to the original
problem

Lecture 3, 25.02.2025

Divide-and-Conquer
Powerful algorithmic approach:

recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Combine the subproblem solutions to give a solution to the original
problem

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

5 2

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

5 2 4 7

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

5 2 4 7 1 3

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

5 2 4 7 1 3 2 6

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

5 2 4 7 1 3 2 6

2 5 4 7 1 3 2 6

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

5 2 4 7 1 3 2 6

2 4 5 7

merge

1 2 3 6

merge
2 5 4 7 1 3 2 6

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

5 2 4 7 1 3 2 6

1 2 2 3 4 5 6 7

merge
2 4 5 7

merge

1 2 3 6

merge
2 5 4 7 1 3 2 6

Lecture 3, 25.02.2025

Merge sort
To sort A[p . . . r]:

Divide by splitting into two subarrays A[p . . . q] and
A[q + 1, . . . , r], where q is the halfway point of A[p . . . r]

Conquer by recursively sorting the two subarrays A[p . . . q] and
A[q + 1, . . . r]

Combine by merging the two sorted subarrays A[p . . . q] and
A[q + 1, . . . , r] to produce a singe sorted
subarray A[p . . . r]

Lecture 3, 25.02.2025

Merge sort
To sort A[p . . . r]:

Divide by splitting into two subarrays A[p . . . q] and
A[q + 1, . . . , r], where q is the halfway point of A[p . . . r]

Conquer by recursively sorting the two subarrays A[p . . . q] and
A[q + 1, . . . r]

Combine by merging the two sorted subarrays A[p . . . q] and
A[q + 1, . . . , r] to produce a singe sorted
subarray A[p . . . r]

Lecture 3, 25.02.2025

Merging
What remains is the merge procedure to solve the “merge” problem:

Definition
INPUT: Array A and indices p ≤ q < r such that subarrays

A[p . . . q], A[q + 1 . . . r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in A[p . . . r].

Example:
2 4 5 7 1 2 3 6

Lecture 3, 25.02.2025

Merging
What remains is the merge procedure to solve the “merge” problem:

Definition
INPUT: Array A and indices p ≤ q < r such that subarrays

A[p . . . q], A[q + 1 . . . r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in A[p . . . r].

Example:
2 4 5 7 1 2 3 6

Lecture 3, 25.02.2025

Merging
What remains is the merge procedure to solve the “merge” problem:

Definition
INPUT: Array A and indices p ≤ q < r such that subarrays

A[p . . . q], A[q + 1 . . . r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in A[p . . . r].

Example:
2 4 5 7 1 2 3 6

1 2 2 3 4 5 6 7

Lecture 3, 25.02.2025

Correctness of Merge-Sort
Assuming merge is correct

Theorem
Assuming that the implementation of the merge procedure is correct,
merge-sort(A,p,r) correctly sorts the numbers in A[p . . . r]

Proof by induction on n = r − p

Base case n = 0: In this case r = p so A[p . . . r] is trivially sorted.

Inductive case: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

▶ By induction hypothesis Merge-Sort(A, p, q) and
Merge-Sort(A, q+1, r) successfully sort the two subarrays.

▶ Therefore a correct merge procedure will successfully sort A[p . . . q]
as required.

.
p rq

Lecture 3, 25.02.2025

Correctness of Merge-Sort
Assuming merge is correct

Theorem
Assuming that the implementation of the merge procedure is correct,
merge-sort(A,p,r) correctly sorts the numbers in A[p . . . r]

Proof by induction on n = r − p

Base case n = 0: In this case r = p so A[p . . . r] is trivially sorted.

Inductive case: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

▶ By induction hypothesis Merge-Sort(A, p, q) and
Merge-Sort(A, q+1, r) successfully sort the two subarrays.

▶ Therefore a correct merge procedure will successfully sort A[p . . . q]
as required.

.
p rq

Lecture 3, 25.02.2025

Correctness of Merge-Sort
Assuming merge is correct

Theorem
Assuming that the implementation of the merge procedure is correct,
merge-sort(A,p,r) correctly sorts the numbers in A[p . . . r]

Proof by induction on n = r − p

Base case n = 0: In this case r = p so A[p . . . r] is trivially sorted.

Inductive case: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

▶ By induction hypothesis Merge-Sort(A, p, q) and
Merge-Sort(A, q+1, r) successfully sort the two subarrays.

▶ Therefore a correct merge procedure will successfully sort A[p . . . q]
as required.

.
p rq

Lecture 3, 25.02.2025

Correctness of Merge-Sort
Assuming merge is correct

Theorem
Assuming that the implementation of the merge procedure is correct,
merge-sort(A,p,r) correctly sorts the numbers in A[p . . . r]

Proof by induction on n = r − p

Base case n = 0: In this case r = p so A[p . . . r] is trivially sorted.

Inductive case: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

▶ By induction hypothesis Merge-Sort(A, p, q) and
Merge-Sort(A, q+1, r) successfully sort the two subarrays.

▶ Therefore a correct merge procedure will successfully sort A[p . . . q]
as required.

5 2 4 7 1 3 2 6.
p rq

Lecture 3, 25.02.2025

Correctness of Merge-Sort
Assuming merge is correct

Theorem
Assuming that the implementation of the merge procedure is correct,
merge-sort(A,p,r) correctly sorts the numbers in A[p . . . r]

Proof by induction on n = r − p

Base case n = 0: In this case r = p so A[p . . . r] is trivially sorted.

Inductive case: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

▶ By induction hypothesis Merge-Sort(A, p, q) and
Merge-Sort(A, q+1, r) successfully sort the two subarrays.

▶ Therefore a correct merge procedure will successfully sort A[p . . . q]
as required.

5 2 4 7 1 3 2 6.
p rq

Lecture 3, 25.02.2025

Correctness of Merge-Sort
Assuming merge is correct

Theorem
Assuming that the implementation of the merge procedure is correct,
merge-sort(A,p,r) correctly sorts the numbers in A[p . . . r]

Proof by induction on n = r − p

Base case n = 0: In this case r = p so A[p . . . r] is trivially sorted.

Inductive case: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

▶ By induction hypothesis Merge-Sort(A, p, q) and
Merge-Sort(A, q+1, r) successfully sort the two subarrays.

▶ Therefore a correct merge procedure will successfully sort A[p . . . q]
as required.

2 4 5 7 1 2 3 6.
p rq

Lecture 3, 25.02.2025

Correctness of Merge-Sort
Assuming merge is correct

Theorem
Assuming that the implementation of the merge procedure is correct,
merge-sort(A,p,r) correctly sorts the numbers in A[p . . . r]

Proof by induction on n = r − p

Base case n = 0: In this case r = p so A[p . . . r] is trivially sorted.

Inductive case: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

▶ By induction hypothesis Merge-Sort(A, p, q) and
Merge-Sort(A, q+1, r) successfully sort the two subarrays.

▶ Therefore a correct merge procedure will successfully sort A[p . . . q]
as required.

2 4 5 7 1 2 3 6.
p rq

Lecture 3, 25.02.2025

Correctness of Merge-Sort
Assuming merge is correct

Theorem
Assuming that the implementation of the merge procedure is correct,
merge-sort(A,p,r) correctly sorts the numbers in A[p . . . r]

Proof by induction on n = r − p

Base case n = 0: In this case r = p so A[p . . . r] is trivially sorted.

Inductive case: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

▶ By induction hypothesis Merge-Sort(A, p, q) and
Merge-Sort(A, q+1, r) successfully sort the two subarrays.

▶ Therefore a correct merge procedure will successfully sort A[p . . . q]
as required.

1 2 2 3 4 5 6 7.
p rq

Lecture 3, 25.02.2025

Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

7542 6321

Lecture 3, 25.02.2025

Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

7542 632

1

Lecture 3, 25.02.2025

Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

7542 63

1 2

Lecture 3, 25.02.2025

Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

754 63

1 2 2

Lecture 3, 25.02.2025

Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

754 6

1 2 2 3

Lecture 3, 25.02.2025

Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

75 6

1 2 2 3 4

Lecture 3, 25.02.2025

Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

7 6

1 2 2 3 4 5

Lecture 3, 25.02.2025

Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

7

1 2 2 3 4 5 6

Lecture 3, 25.02.2025

Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

1 2 2 3 4 5 6 7

Lecture 3, 25.02.2025

Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile
▶ There are ≤ n basic steps, since each basic step removes one card

from the input piles, and we started with n cards in the input pile
▶ Therefore the procedure should take θ(n) time

1 2 2 3 4 5 6 7

Lecture 3, 25.02.2025

Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞7542 ∞6321

Lecture 3, 25.02.2025

Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞7542 ∞632

1

Lecture 3, 25.02.2025

Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞7542 ∞63

1 2

Lecture 3, 25.02.2025

Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞754 ∞63

1 2 2

Lecture 3, 25.02.2025

Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞754 ∞6

1 2 2 3

Lecture 3, 25.02.2025

Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞75 ∞6

1 2 2 3 4

Lecture 3, 25.02.2025

Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞7 ∞6

1 2 2 3 4 5

Lecture 3, 25.02.2025

Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞7 ∞

1 2 2 3 4 5 6

Lecture 3, 25.02.2025

Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞ ∞

1 2 2 3 4 5 6 7

Lecture 3, 25.02.2025

Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞ ∞

1 2 2 3 4 5 6 7

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

2 4 5 7 1 2 3 6

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

2 4 5 7 1 2 3 6

L: R:

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

2 4 5 7 1 2 3 6

L: 2 4 5 7 R:

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

2 4 5 7 1 2 3 6

L: 2 4 5 7 R: 1 2 3 6

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

2 4 5 7 1 2 3 6

L: 2 4 5 7 ∞ R: 1 2 3 6 ∞

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

2 4 5 7 1 2 3 6

L: 2 4 5 7 ∞ R: 1 2 3 6 ∞

ji

k

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

1 4 5 7 1 2 3 6

L: 2 4 5 7 ∞ R: 1 2 3 6 ∞

ji

k

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

1 2 5 7 1 2 3 6

L: 2 4 5 7 ∞ R: 1 2 3 6 ∞

ji

k

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

1 2 2 7 1 2 3 6

L: 2 4 5 7 ∞ R: 1 2 3 6 ∞

ji

k

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

1 2 2 3 1 2 3 6

L: 2 4 5 7 ∞ R: 1 2 3 6 ∞

ji

k

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

1 2 2 3 4 2 3 6

L: 2 4 5 7 ∞ R: 1 2 3 6 ∞

ji

k

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

1 2 2 3 4 5 3 6

L: 2 4 5 7 ∞ R: 1 2 3 6 ∞

ji

k

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

1 2 2 3 4 5 6 6

L: 2 4 5 7 ∞ R: 1 2 3 6 ∞

ji

k

Lecture 3, 25.02.2025

Merging Algorithm

A:

A[p] A[q] A[r]

1 2 2 3 4 5 6 7

L: 2 4 5 7 ∞ R: 1 2 3 6 ∞

ji

Lecture 3, 25.02.2025

Merging Algorithm

▶ Runtime analysis?

Merge runs in time Θ(n) where n is the number of elements in the
subarray, i.e.,

n = r − p + 1

Lecture 3, 25.02.2025

Merging Algorithm

▶ Runtime analysis?

Merge runs in time Θ(n) where n is the number of elements in the
subarray, i.e.,

n = r − p + 1

Lecture 3, 25.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
▶ Let T (n) = “running time on a problem of size n”
▶ If n is small enough say n ≤ c for some constant c then

T (n) = Θ(1) (by brute force)

▶ Otherwise, suppose we divide into a sub problems each of size n/b.
▶ Let D(n) be the time to divide and let C(n) the time to combine

solutions.
▶ We get the recurrence

T (n) =
{

Θ(1) if n ≤ c,

aT (n/b) + D(n) + C(n) otherwise.

Lecture 3, 25.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
▶ Let T (n) = “running time on a problem of size n”

▶ If n is small enough say n ≤ c for some constant c then
T (n) = Θ(1) (by brute force)

▶ Otherwise, suppose we divide into a sub problems each of size n/b.
▶ Let D(n) be the time to divide and let C(n) the time to combine

solutions.
▶ We get the recurrence

T (n) =
{

Θ(1) if n ≤ c,

aT (n/b) + D(n) + C(n) otherwise.

Lecture 3, 25.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
▶ Let T (n) = “running time on a problem of size n”
▶ If n is small enough say n ≤ c for some constant c then

T (n) = Θ(1) (by brute force)

▶ Otherwise, suppose we divide into a sub problems each of size n/b.
▶ Let D(n) be the time to divide and let C(n) the time to combine

solutions.
▶ We get the recurrence

T (n) =
{

Θ(1) if n ≤ c,

aT (n/b) + D(n) + C(n) otherwise.

Lecture 3, 25.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
▶ Let T (n) = “running time on a problem of size n”
▶ If n is small enough say n ≤ c for some constant c then

T (n) = Θ(1) (by brute force)

▶ Otherwise, suppose we divide into a sub problems each of size n/b.

▶ Let D(n) be the time to divide and let C(n) the time to combine
solutions.

▶ We get the recurrence

T (n) =
{

Θ(1) if n ≤ c,

aT (n/b) + D(n) + C(n) otherwise.

Lecture 3, 25.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
▶ Let T (n) = “running time on a problem of size n”
▶ If n is small enough say n ≤ c for some constant c then

T (n) = Θ(1) (by brute force)

▶ Otherwise, suppose we divide into a sub problems each of size n/b.
▶ Let D(n) be the time to divide and let C(n) the time to combine

solutions.

▶ We get the recurrence

T (n) =
{

Θ(1) if n ≤ c,

aT (n/b) + D(n) + C(n) otherwise.

Lecture 3, 25.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
▶ Let T (n) = “running time on a problem of size n”
▶ If n is small enough say n ≤ c for some constant c then

T (n) = Θ(1) (by brute force)

▶ Otherwise, suppose we divide into a sub problems each of size n/b.
▶ Let D(n) be the time to divide and let C(n) the time to combine

solutions.
▶ We get the recurrence

T (n) =
{

Θ(1) if n ≤ c,

aT (n/b) + D(n) + C(n) otherwise.

Lecture 3, 25.02.2025

Analysis of Merge Sort

Divide: takes constant time, i.e., D(n) = Θ(1)

Conquer: recursively solve two subproblems, each of size
n/2 ⇒ 2T (n/2).

Combine: Merge on an n-element subarray takes Θ(n) time
⇒ C(n) = Θ(n).

Recurrence for merge sort running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise.

Lecture 3, 25.02.2025

Analysis of Merge Sort

Divide: takes constant time, i.e., D(n) = Θ(1)

Conquer: recursively solve two subproblems, each of size
n/2 ⇒ 2T (n/2).

Combine: Merge on an n-element subarray takes Θ(n) time
⇒ C(n) = Θ(n).

Recurrence for merge sort running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise.

Lecture 3, 25.02.2025

Analysis of Merge Sort

Divide: takes constant time, i.e., D(n) = Θ(1)

Conquer: recursively solve two subproblems, each of size
n/2 ⇒ 2T (n/2).

Combine: Merge on an n-element subarray takes Θ(n) time
⇒ C(n) = Θ(n).

Recurrence for merge sort running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise.

Lecture 3, 25.02.2025

Analysis of Merge Sort

Divide: takes constant time, i.e., D(n) = Θ(1)

Conquer: recursively solve two subproblems, each of size
n/2 ⇒ 2T (n/2).

Combine: Merge on an n-element subarray takes Θ(n) time
⇒ C(n) = Θ(n).

Recurrence for merge sort running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise.

Lecture 3, 25.02.2025

Analysis of Merge Sort

Divide: takes constant time, i.e., D(n) = Θ(1)

Conquer: recursively solve two subproblems, each of size
n/2 ⇒ 2T (n/2).

Combine: Merge on an n-element subarray takes Θ(n) time
⇒ C(n) = Θ(n).

Recurrence for merge sort running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise.

Lecture 3, 25.02.2025

Comparing the Two Sorting Algorithms

Algorithm worst-case running time in-place
Insertion Sort Θ(n2)

Merge Sort Θ(n log n)

▶ A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)

▶ Insertion sort is incremental: having sorted the subarray A[1 . . . j − 1], we
inserted the single element A[j] into its proper place, yielding the sorted
subarray A[1 . . . j].

▶ Merge sort is divide-and-conquer: break the problem into smaller
subproblems and then combine the solutions to the subproblems

Lecture 3, 25.02.2025

Comparing the Two Sorting Algorithms

Algorithm worst-case running time in-place
Insertion Sort Θ(n2)

Merge Sort Θ(n log n)

▶ A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)

▶ Insertion sort is incremental: having sorted the subarray A[1 . . . j − 1], we
inserted the single element A[j] into its proper place, yielding the sorted
subarray A[1 . . . j].

▶ Merge sort is divide-and-conquer: break the problem into smaller
subproblems and then combine the solutions to the subproblems

Lecture 3, 25.02.2025

Comparing the Two Sorting Algorithms

Algorithm worst-case running time in-place
Insertion Sort Θ(n2) YES

Merge Sort Θ(n log n)

▶ A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)

▶ Insertion sort is incremental: having sorted the subarray A[1 . . . j − 1], we
inserted the single element A[j] into its proper place, yielding the sorted
subarray A[1 . . . j].

▶ Merge sort is divide-and-conquer: break the problem into smaller
subproblems and then combine the solutions to the subproblems

Lecture 3, 25.02.2025

Comparing the Two Sorting Algorithms

Algorithm worst-case running time in-place
Insertion Sort Θ(n2) YES

Merge Sort Θ(n log n) NO

▶ A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)

▶ Insertion sort is incremental: having sorted the subarray A[1 . . . j − 1], we
inserted the single element A[j] into its proper place, yielding the sorted
subarray A[1 . . . j].

▶ Merge sort is divide-and-conquer: break the problem into smaller
subproblems and then combine the solutions to the subproblems

Lecture 3, 25.02.2025

Comparing the Two Sorting Algorithms

Algorithm worst-case running time in-place
Insertion Sort Θ(n2) YES

Merge Sort Θ(n log n) NO

▶ A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)

▶ Insertion sort is incremental: having sorted the subarray A[1 . . . j − 1], we
inserted the single element A[j] into its proper place, yielding the sorted
subarray A[1 . . . j].

▶ Merge sort is divide-and-conquer: break the problem into smaller
subproblems and then combine the solutions to the subproblems

Lecture 3, 25.02.2025

SOLVING RECURRENCES

INDUCTION

Lecture 3, 25.02.2025

SOLVING RECURRENCES

INDUCTION

INDUCTION

Lecture 3, 25.02.2025

SOLVING RECURRENCES

INDUCTION

INDUCTION

INDUCTION

Lecture 3, 25.02.2025

SOLVING RECURRENCES

INDUCTION

INDUCTION

INDUCTION
INDUCTION

Lecture 3, 25.02.2025

SOLVING RECURRENCES

INDUCTION

INDUCTION

INDUCTION
INDUCTION

INDUCTION

Lecture 3, 25.02.2025

SOLVING RECURRENCES

INDUCTION

INDUCTION

INDUCTION
INDUCTION

INDUCTION
INDUCTION

Lecture 3, 25.02.2025

SOLVING RECURRENCES

INDUCTION

INDUCTION

INDUCTION
INDUCTION

INDUCTION
INDUCTION

INDUCTION

Lecture 3, 25.02.2025

SOLVING RECURRENCES

INDUCTION

INDUCTION

INDUCTION
INDUCTION

INDUCTION
INDUCTION

INDUCTIONINDUCTION

Lecture 3, 25.02.2025

SOLVING RECURRENCES

INDUCTION

INDUCTION

INDUCTION
INDUCTION

INDUCTION
INDUCTION

INDUCTIONINDUCTIONINDUCTION
Lecture 3, 25.02.2025

SOLVING RECURRENCES

INDUCTION

INDUCTION

INDUCTION
INDUCTION

INDUCTION
INDUCTION

INDUCTIONINDUCTIONINDUCTIONINDUCTION
Lecture 3, 25.02.2025

Analysing Recurrences

As an example, we shall consider the following recurrence

T (n) =
{

c if n = 1,

2T (n/2) + c · n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
merge-sort by selecting c sufficiently large and small, respectively.

We shall solve recurrences by using three techniques:
▶ The substitution method
▶ Recursion trees
▶ Master method

Lecture 3, 25.02.2025

Analysing Recurrences

As an example, we shall consider the following recurrence

T (n) =
{

c if n = 1,

2T (n/2) + c · n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
merge-sort by selecting c sufficiently large and small, respectively.

We shall solve recurrences by using three techniques:
▶ The substitution method
▶ Recursion trees
▶ Master method

Lecture 3, 25.02.2025

The substitution method
▶ Guess the form of the solution
▶ Use mathematical induction to find the constants and show that

the solution works.

T (n) = 2T (n/2) + c · n
= 2(2T (n/4) + c · n/2) + c · n = 4T (n/4) + 2 · cn
= 4(2T (n/8) + c · n/4) + 2 · cn = 8T (n/8) + 3 · cn

...

Hmm it seems like

= 2kT (n/2k) + k · cn

A qualified guess is that T (n) = Θ(n log n)

Lecture 3, 25.02.2025

The substitution method
▶ Guess the form of the solution
▶ Use mathematical induction to find the constants and show that

the solution works.

T (n) = 2T (n/2) + c · n
= 2(2T (n/4) + c · n/2) + c · n = 4T (n/4) + 2 · cn
= 4(2T (n/8) + c · n/4) + 2 · cn = 8T (n/8) + 3 · cn

...

Hmm it seems like

= 2kT (n/2k) + k · cn

A qualified guess is that T (n) = Θ(n log n)

Lecture 3, 25.02.2025

The substitution method
▶ Guess the form of the solution
▶ Use mathematical induction to find the constants and show that

the solution works.

T (n) = 2T (n/2) + c · n
= 2(2T (n/4) + c · n/2) + c · n = 4T (n/4) + 2 · cn
= 4(2T (n/8) + c · n/4) + 2 · cn = 8T (n/8) + 3 · cn

...

Hmm it seems like

= 2kT (n/2k) + k · cn

A qualified guess is that T (n) = Θ(n log n)

Lecture 3, 25.02.2025

The substitution method
▶ Guess the form of the solution
▶ Use mathematical induction to find the constants and show that

the solution works.

T (n) = 2T (n/2) + c · n
= 2(2T (n/4) + c · n/2) + c · n = 4T (n/4) + 2 · cn
= 4(2T (n/8) + c · n/4) + 2 · cn = 8T (n/8) + 3 · cn

...

Hmm it seems like

= 2kT (n/2k) + k · cn

A qualified guess is that T (n) = Θ(n log n)

Lecture 3, 25.02.2025

The substitution method
▶ Guess the form of the solution
▶ Use mathematical induction to find the constants and show that

the solution works.

T (n) = 2T (n/2) + c · n
= 2(2T (n/4) + c · n/2) + c · n = 4T (n/4) + 2 · cn
= 4(2T (n/8) + c · n/4) + 2 · cn = 8T (n/8) + 3 · cn

...

Hmm it seems like

= 2kT (n/2k) + k · cn

A qualified guess is that T (n) = Θ(n log n)

Lecture 3, 25.02.2025

The substitution method
▶ Guess the form of the solution
▶ Use mathematical induction to find the constants and show that

the solution works.

T (n) = 2T (n/2) + c · n
= 2(2T (n/4) + c · n/2) + c · n = 4T (n/4) + 2 · cn
= 4(2T (n/8) + c · n/4) + 2 · cn = 8T (n/8) + 3 · cn

...

Hmm it seems like

= 2kT (n/2k) + k · cn

A qualified guess is that T (n) = Θ(n log n)

Lecture 3, 25.02.2025

The substitution method
▶ Guess the form of the solution
▶ Use mathematical induction to find the constants and show that

the solution works.

T (n) = 2T (n/2) + c · n
= 2(2T (n/4) + c · n/2) + c · n = 4T (n/4) + 2 · cn
= 4(2T (n/8) + c · n/4) + 2 · cn = 8T (n/8) + 3 · cn

...

Hmm it seems like

= 2kT (n/2k) + k · cn

A qualified guess is that T (n) = Θ(n log n)

Lecture 3, 25.02.2025

The substitution method
▶ Guess the form of the solution
▶ Use mathematical induction to find the constants and show that

the solution works.

T (n) = 2T (n/2) + c · n
= 2(2T (n/4) + c · n/2) + c · n = 4T (n/4) + 2 · cn
= 4(2T (n/8) + c · n/4) + 2 · cn = 8T (n/8) + 3 · cn

...

Hmm it seems like

= 2kT (n/2k) + k · cn

A qualified guess is that T (n) = Θ(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound
There exists a constant a > 0 such that T (n) ≤ a · n log n for all n ≥ 2

Proof by induction on n

Base cases: For any constant n ∈ {2, 3, 4}, T (n) has a constant value,
selecting a larger than this value will satisfy the base cases when
n ∈ {2, 3, 4}.

Inductive step: Assume statement true ∀n ∈ {2, 3, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≤ 2 · an
2 log(n/2) + c · n = a · n log(n/2) + cn

= a · n log n − an + cn
≤ a · n log n (if we select a ≥ c)

We can thus select a to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = O(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound
There exists a constant a > 0 such that T (n) ≤ a · n log n for all n ≥ 2

Proof by induction on n

Base cases: For any constant n ∈ {2, 3, 4}, T (n) has a constant value,
selecting a larger than this value will satisfy the base cases when
n ∈ {2, 3, 4}.

Inductive step: Assume statement true ∀n ∈ {2, 3, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≤ 2 · an
2 log(n/2) + c · n = a · n log(n/2) + cn

= a · n log n − an + cn
≤ a · n log n (if we select a ≥ c)

We can thus select a to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = O(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound
There exists a constant a > 0 such that T (n) ≤ a · n log n for all n ≥ 2

Proof by induction on n

Base cases: For any constant n ∈ {2, 3, 4}, T (n) has a constant value,
selecting a larger than this value will satisfy the base cases when
n ∈ {2, 3, 4}.

Inductive step: Assume statement true ∀n ∈ {2, 3, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≤ 2 · an
2 log(n/2) + c · n = a · n log(n/2) + cn

= a · n log n − an + cn
≤ a · n log n (if we select a ≥ c)

We can thus select a to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = O(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound
There exists a constant a > 0 such that T (n) ≤ a · n log n for all n ≥ 2

Proof by induction on n

Base cases: For any constant n ∈ {2, 3, 4}, T (n) has a constant value,
selecting a larger than this value will satisfy the base cases when
n ∈ {2, 3, 4}.

Inductive step: Assume statement true ∀n ∈ {2, 3, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≤ 2 · an
2 log(n/2) + c · n = a · n log(n/2) + cn

= a · n log n − an + cn
≤ a · n log n (if we select a ≥ c)

We can thus select a to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = O(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound
There exists a constant a > 0 such that T (n) ≤ a · n log n for all n ≥ 2

Proof by induction on n

Base cases: For any constant n ∈ {2, 3, 4}, T (n) has a constant value,
selecting a larger than this value will satisfy the base cases when
n ∈ {2, 3, 4}.

Inductive step: Assume statement true ∀n ∈ {2, 3, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≤ 2 · an
2 log(n/2) + c · n = a · n log(n/2) + cn

= a · n log n − an + cn
≤ a · n log n (if we select a ≥ c)

We can thus select a to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = O(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound
There exists a constant a > 0 such that T (n) ≤ a · n log n for all n ≥ 2

Proof by induction on n

Base cases: For any constant n ∈ {2, 3, 4}, T (n) has a constant value,
selecting a larger than this value will satisfy the base cases when
n ∈ {2, 3, 4}.

Inductive step: Assume statement true ∀n ∈ {2, 3, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≤ 2 · an
2 log(n/2) + c · n = a · n log(n/2) + cn

= a · n log n − an + cn
≤ a · n log n (if we select a ≥ c)

We can thus select a to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = O(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound
There exists a constant a > 0 such that T (n) ≤ a · n log n for all n ≥ 2

Proof by induction on n

Base cases: For any constant n ∈ {2, 3, 4}, T (n) has a constant value,
selecting a larger than this value will satisfy the base cases when
n ∈ {2, 3, 4}.

Inductive step: Assume statement true ∀n ∈ {2, 3, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≤ 2 · an
2 log(n/2) + c · n = a · n log(n/2) + cn

= a · n log n − an + cn
≤ a · n log n (if we select a ≥ c)

We can thus select a to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = O(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T (n) ≥ b · n log n for all n ≥ 0

Proof by induction on n

Base case: For n = 1, T (n) = c and b · n log n = 0 so the base case is
satisfied for any b.

Inductive step: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≥ 2 · bn
2 log(n/2) + c · n = b · n log(n/2) + cn

= b · n log n − bn + cn
≥ b · n log n (if we select b ≤ c)

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = Ω(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T (n) ≥ b · n log n for all n ≥ 0

Proof by induction on n

Base case: For n = 1, T (n) = c and b · n log n = 0 so the base case is
satisfied for any b.

Inductive step: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≥ 2 · bn
2 log(n/2) + c · n = b · n log(n/2) + cn

= b · n log n − bn + cn
≥ b · n log n (if we select b ≤ c)

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = Ω(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T (n) ≥ b · n log n for all n ≥ 0

Proof by induction on n

Base case: For n = 1, T (n) = c and b · n log n = 0 so the base case is
satisfied for any b.

Inductive step: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≥ 2 · bn
2 log(n/2) + c · n = b · n log(n/2) + cn

= b · n log n − bn + cn
≥ b · n log n (if we select b ≤ c)

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = Ω(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T (n) ≥ b · n log n for all n ≥ 0

Proof by induction on n

Base case: For n = 1, T (n) = c and b · n log n = 0 so the base case is
satisfied for any b.

Inductive step: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≥ 2 · bn
2 log(n/2) + c · n = b · n log(n/2) + cn

= b · n log n − bn + cn
≥ b · n log n (if we select b ≤ c)

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = Ω(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T (n) ≥ b · n log n for all n ≥ 0

Proof by induction on n

Base case: For n = 1, T (n) = c and b · n log n = 0 so the base case is
satisfied for any b.

Inductive step: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≥ 2 · bn
2 log(n/2) + c · n = b · n log(n/2) + cn

= b · n log n − bn + cn
≥ b · n log n (if we select b ≤ c)

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = Ω(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T (n) ≥ b · n log n for all n ≥ 0

Proof by induction on n

Base case: For n = 1, T (n) = c and b · n log n = 0 so the base case is
satisfied for any b.

Inductive step: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≥ 2 · bn
2 log(n/2) + c · n = b · n log(n/2) + cn

= b · n log n − bn + cn
≥ b · n log n (if we select b ≤ c)

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = Ω(n log n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T (n) ≥ b · n log n for all n ≥ 0

Proof by induction on n

Base case: For n = 1, T (n) = c and b · n log n = 0 so the base case is
satisfied for any b.

Inductive step: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≥ 2 · bn
2 log(n/2) + c · n = b · n log(n/2) + cn

= b · n log n − bn + cn
≥ b · n log n (if we select b ≤ c)

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = Ω(n log n)

Lecture 3, 25.02.2025

Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T (n) = 4T (n/4) + n, that
T (n) = O(n):

T (n) ≤ 4(c(n/4)) + n
≤ cn + n = O(n) wrong!

Because we haven’t proven the exact form of our inductive hypothesis
(which is that T (n) ≤ cn), this proof is false

Lecture 3, 25.02.2025

Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T (n) = 4T (n/4) + n, that
T (n) = O(n):

T (n) ≤ 4(c(n/4)) + n
≤ cn + n = O(n) wrong!

Because we haven’t proven the exact form of our inductive hypothesis
(which is that T (n) ≤ cn), this proof is false

Lecture 3, 25.02.2025

Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T (n) = 4T (n/4) + n, that
T (n) = O(n):

T (n) ≤ 4(c(n/4)) + n
≤ cn + n = O(n) wrong!

Because we haven’t proven the exact form of our inductive hypothesis
(which is that T (n) ≤ cn), this proof is false

Lecture 3, 25.02.2025

Recursion trees

Another way to generate a guess. Then verify by substitution method.

▶ Each node corresponds to the cost of a subproblem

▶ We sum the costs within each level of the tree to obtain a set of
per-level costs,

▶ then we sum all the per-level costs to determine the total cost of all
levels of the recursion.

Lecture 3, 25.02.2025

Recursion trees
Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn

Qualified guess: T (n) = cn log2 n = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn

cn

Qualified guess: T (n) = cn log2 n = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn

cn

cn/2 cn/2

Qualified guess: T (n) = cn log2 n = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn

cn

cn/2 cn/2

cn/4 cn/4 cn/4cn/4

Qualified guess: T (n) = cn log2 n = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn

cn

cn/2 cn/2

cn/4 cn/4 cn/4cn/4

T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1)

Qualified guess: T (n) = cn log2 n = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn

cn

cn/2 cn/2

cn/4 cn/4 cn/4cn/4

T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1)

log2(n)

Qualified guess: T (n) = cn log2 n = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn

cn

cn/2 cn/2

cn/4 cn/4 cn/4cn/4

T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1)

log2(n)

2log2(n) = n

Qualified guess: T (n) = cn log2 n = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn

cn

cn/2 cn/2

cn/4 cn/4 cn/4cn/4 cn

...

cn

cn

cn

T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1)

log2(n)

2log2(n) = n

Qualified guess: T (n) = cn log2 n = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn

cn

cn/2 cn/2

cn/4 cn/4 cn/4cn/4 cn

...

cn

cn

cn

T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1)

log2(n)

2log2(n) = n

Qualified guess: T (n) = cn log2 n = Θ(n log n)
Lecture 3, 25.02.2025

Recursion trees
Another interesting example: T (n) = T (n/3) + T (2n/3) + cn

▶ There are log3 n full levels and after log3/2 n levels the problem size
is down to 1.

▶ Each level contributes ≈ cn

Qualified guess: exist positive constants a, b so that
a · n log3(n) ≤ T (n) ≤ b · n log3/2 n ⇒ T (n) = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Another interesting example: T (n) = T (n/3) + T (2n/3) + cn

cn

▶ There are log3 n full levels and after log3/2 n levels the problem size
is down to 1.

▶ Each level contributes ≈ cn

Qualified guess: exist positive constants a, b so that
a · n log3(n) ≤ T (n) ≤ b · n log3/2 n ⇒ T (n) = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Another interesting example: T (n) = T (n/3) + T (2n/3) + cn

cn

cn/3 c2n/3

▶ There are log3 n full levels and after log3/2 n levels the problem size
is down to 1.

▶ Each level contributes ≈ cn

Qualified guess: exist positive constants a, b so that
a · n log3(n) ≤ T (n) ≤ b · n log3/2 n ⇒ T (n) = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Another interesting example: T (n) = T (n/3) + T (2n/3) + cn

cn

cn/3 c2n/3

cn/9 c2n/9 c4n/9c2n/9
...

▶ There are log3 n full levels and after log3/2 n levels the problem size
is down to 1.

▶ Each level contributes ≈ cn

Qualified guess: exist positive constants a, b so that
a · n log3(n) ≤ T (n) ≤ b · n log3/2 n ⇒ T (n) = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Another interesting example: T (n) = T (n/3) + T (2n/3) + cn

cn

cn/3 c2n/3

cn/9 c2n/9 c4n/9c2n/9
...

cn

cn

cn

▶ There are log3 n full levels and after log3/2 n levels the problem size
is down to 1.

▶ Each level contributes ≈ cn

Qualified guess: exist positive constants a, b so that
a · n log3(n) ≤ T (n) ≤ b · n log3/2 n ⇒ T (n) = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Another interesting example: T (n) = T (n/3) + T (2n/3) + cn

cn

cn/3 c2n/3

cn/9 c2n/9 c4n/9c2n/9
...

leftmost branch peters
out after log3 n levels

cn

cn

cn

▶ There are log3 n full levels and after log3/2 n levels the problem size
is down to 1.

▶ Each level contributes ≈ cn

Qualified guess: exist positive constants a, b so that
a · n log3(n) ≤ T (n) ≤ b · n log3/2 n ⇒ T (n) = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Another interesting example: T (n) = T (n/3) + T (2n/3) + cn

cn

cn/3 c2n/3

cn/9 c2n/9 c4n/9c2n/9
...

leftmost branch peters
out after log3 n levels

rightmost branch peters
out after log3/2 n levels

cn

cn

cn

▶ There are log3 n full levels and after log3/2 n levels the problem size
is down to 1.

▶ Each level contributes ≈ cn

Qualified guess: exist positive constants a, b so that
a · n log3(n) ≤ T (n) ≤ b · n log3/2 n ⇒ T (n) = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Another interesting example: T (n) = T (n/3) + T (2n/3) + cn

cn

cn/3 c2n/3

cn/9 c2n/9 c4n/9c2n/9
...

leftmost branch peters
out after log3 n levels

rightmost branch peters
out after log3/2 n levels

cn

cn

cn

▶ There are log3 n full levels and after log3/2 n levels the problem size
is down to 1.

▶ Each level contributes ≈ cn

Qualified guess: exist positive constants a, b so that
a · n log3(n) ≤ T (n) ≤ b · n log3/2 n ⇒ T (n) = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Another interesting example: T (n) = T (n/3) + T (2n/3) + cn

cn

cn/3 c2n/3

cn/9 c2n/9 c4n/9c2n/9
...

leftmost branch peters
out after log3 n levels

rightmost branch peters
out after log3/2 n levels

cn

cn

cn

▶ There are log3 n full levels and after log3/2 n levels the problem size
is down to 1.

▶ Each level contributes ≈ cn

Qualified guess: exist positive constants a, b so that
a · n log3(n) ≤ T (n) ≤ b · n log3/2 n ⇒ T (n) = Θ(n log n)

Lecture 3, 25.02.2025

Recursion trees
Another interesting example: T (n) = T (n/3) + T (2n/3) + cn

cn

cn/3 c2n/3

cn/9 c2n/9 c4n/9c2n/9
...

leftmost branch peters
out after log3 n levels

rightmost branch peters
out after log3/2 n levels

cn

cn

cn

▶ There are log3 n full levels and after log3/2 n levels the problem size
is down to 1.

▶ Each level contributes ≈ cn
Qualified guess: exist positive constants a, b so that

a · n log3(n) ≤ T (n) ≤ b · n log3/2 n ⇒ T (n) = Θ(n log n)
Lecture 3, 25.02.2025

Master method
Used to black-box solve recurrences of the form T (n) = aT (n/b) + f (n)

Theorem (Master Theorem)
Let a ≥ 1 and b > 1 be constants, let T (n) be defined on the nonnegative integers by
the recurrence

T (n) = aT (n/b) + f (n).

Then, T (n) has the following asymptotic bounds

▶ If f (n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a)

▶ If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)

▶ If f (n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if a · f (n/b) ≤ c · f (n) for
some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n))

Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn
▶ f (n) = O(n) and a = b = 2 so logb(a) = 1 and f (n) = Θ(nlogb(a)).
▶ By Master theorem, we have T (n) = Θ(n log n) :)

Lecture 3, 25.02.2025

Master method
Used to black-box solve recurrences of the form T (n) = aT (n/b) + f (n)

Theorem (Master Theorem)
Let a ≥ 1 and b > 1 be constants, let T (n) be defined on the nonnegative integers by
the recurrence

T (n) = aT (n/b) + f (n).

Then, T (n) has the following asymptotic bounds

▶ If f (n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a)

▶ If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)

▶ If f (n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if a · f (n/b) ≤ c · f (n) for
some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n))

Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn
▶ f (n) = O(n) and a = b = 2 so logb(a) = 1 and f (n) = Θ(nlogb(a)).
▶ By Master theorem, we have T (n) = Θ(n log n) :)

Lecture 3, 25.02.2025

Master method
Used to black-box solve recurrences of the form T (n) = aT (n/b) + f (n)

Theorem (Master Theorem)
Let a ≥ 1 and b > 1 be constants, let T (n) be defined on the nonnegative integers by
the recurrence

T (n) = aT (n/b) + f (n).

Then, T (n) has the following asymptotic bounds

▶ If f (n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a)

▶ If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)

▶ If f (n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if a · f (n/b) ≤ c · f (n) for
some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n))

Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn
▶ f (n) = O(n) and a = b = 2 so logb(a) = 1 and f (n) = Θ(nlogb(a)).
▶ By Master theorem, we have T (n) = Θ(n log n) :)

Lecture 3, 25.02.2025

Master method
Used to black-box solve recurrences of the form T (n) = aT (n/b) + f (n)

Theorem (Master Theorem)
Let a ≥ 1 and b > 1 be constants, let T (n) be defined on the nonnegative integers by
the recurrence

T (n) = aT (n/b) + f (n).

Then, T (n) has the following asymptotic bounds

▶ If f (n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a)

▶ If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)

▶ If f (n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if a · f (n/b) ≤ c · f (n) for
some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n))

Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn
▶ f (n) = O(n) and a = b = 2 so logb(a) = 1 and f (n) = Θ(nlogb(a)).
▶ By Master theorem, we have T (n) = Θ(n log n) :)

Lecture 3, 25.02.2025

Master method
Used to black-box solve recurrences of the form T (n) = aT (n/b) + f (n)

Theorem (Master Theorem)
Let a ≥ 1 and b > 1 be constants, let T (n) be defined on the nonnegative integers by
the recurrence

T (n) = aT (n/b) + f (n).

Then, T (n) has the following asymptotic bounds

▶ If f (n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a)

▶ If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)

▶ If f (n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if a · f (n/b) ≤ c · f (n) for
some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n))

Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn
▶ f (n) = O(n) and a = b = 2 so logb(a) = 1 and f (n) = Θ(nlogb(a)).
▶ By Master theorem, we have T (n) = Θ(n log n) :)

Lecture 3, 25.02.2025

Master method
Used to black-box solve recurrences of the form T (n) = aT (n/b) + f (n)

Theorem (Master Theorem)
Let a ≥ 1 and b > 1 be constants, let T (n) be defined on the nonnegative integers by
the recurrence

T (n) = aT (n/b) + f (n).

Then, T (n) has the following asymptotic bounds

▶ If f (n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a)

▶ If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)

▶ If f (n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if a · f (n/b) ≤ c · f (n) for
some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n))

Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn
▶ f (n) = O(n) and a = b = 2 so logb(a) = 1 and f (n) = Θ(nlogb(a)).

▶ By Master theorem, we have T (n) = Θ(n log n) :)

Lecture 3, 25.02.2025

Master method
Used to black-box solve recurrences of the form T (n) = aT (n/b) + f (n)

Theorem (Master Theorem)
Let a ≥ 1 and b > 1 be constants, let T (n) be defined on the nonnegative integers by
the recurrence

T (n) = aT (n/b) + f (n).

Then, T (n) has the following asymptotic bounds

▶ If f (n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a)

▶ If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)

▶ If f (n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if a · f (n/b) ≤ c · f (n) for
some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n))

Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn
▶ f (n) = O(n) and a = b = 2 so logb(a) = 1 and f (n) = Θ(nlogb(a)).
▶ By Master theorem, we have T (n) = Θ(n log n) :)

Lecture 3, 25.02.2025

Summary

▶ Divide-and-conquer simple but powerful algorithmic paradigm

▶ Solving the recurrence for merge sort shows that it runs in time
Θ(n log n), i.e., much faster than Insertion sort for large instances

▶ For small instances insertion sort can still be faster

▶ Solving recurrences fun but delicate

Lecture 3, 25.02.2025

Summary

▶ Divide-and-conquer simple but powerful algorithmic paradigm

▶ Solving the recurrence for merge sort shows that it runs in time
Θ(n log n), i.e., much faster than Insertion sort for large instances

▶ For small instances insertion sort can still be faster

▶ Solving recurrences fun but delicate

Lecture 3, 25.02.2025

Summary

▶ Divide-and-conquer simple but powerful algorithmic paradigm

▶ Solving the recurrence for merge sort shows that it runs in time
Θ(n log n), i.e., much faster than Insertion sort for large instances

▶ For small instances insertion sort can still be faster

▶ Solving recurrences fun but delicate

Lecture 3, 25.02.2025

Summary

▶ Divide-and-conquer simple but powerful algorithmic paradigm

▶ Solving the recurrence for merge sort shows that it runs in time
Θ(n log n), i.e., much faster than Insertion sort for large instances

▶ For small instances insertion sort can still be faster

▶ Solving recurrences fun but delicate

Lecture 3, 25.02.2025

