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CalculateSum(n):

.ans =0

1

2. fori=1,2,...,n
3. ans = ans + i
4

Often used for proof of correctness in presence of loops . return ans

Loop invariant = “a statement that is satisfied during the loop”

Ex: At the start of each iteration ans = (i — 1) * i/2

Need to verify (similar to induction)

Initialization: True at the beginning of the 1st iteration of the loop

Maintenance: If it is true before an iteration of the loop, it remains true
before the next iteration.

Termination: When the loop terminates, the invariant — usually along
with the reason that the loop terminated — gives us a useful property
that helps show that the algorithm is correct.




Recall Last Lecture: Loop Invariant

The difficulty is often to come up with the right loop invariant
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Recall Last Lecture: Loop Invariant

The difficulty is often to come up with the right loop invariant

INSERTION-SORT (A, n)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j—-1
wlu'le]i > 0and A[i] > key
Ali + 1] = A[i]
i=i-1

Ali + 1] = key
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Recall Last Lecture: Loop Invariant

The difficulty is often to come up with the right loop invariant

INSERTION-SORT (A, n)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j—-1
while]i > 0and A[i] > key
Ali + 1] = Ali]
i=i-1

Ali + 1] = key

Loop invariant:

At the start of each iteration of the “outer” for loop — the loop
indexed by j— the subarrary A[l...,j — 1] consists of the elements
originally in A[1,...,j — 1] but in sorted order.
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Recall Last Lecture: Loop Invariant

The difficulty is often to come up with the right loop invariant

Linear-Search(4,v)

1 for i< 1 to length(A)
2 if A[i] = v then

3 return |

4 return NIL
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Recall Last Lecture: Loop Invariant

The difficulty is often to come up with the right loop invariant

Linear-Search(4,v)

1 for i < 1 to length(A)
2 if A[i] = v then

3 return |

4 return NIL

Loop invariant:

At the start of each iteration of the for loop we have A[j] # v for all
j<i.
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Random-access machine (RAM) model
> Instructions are executed one after another

» Simplification basic instructions take constant (O(1)) time

> Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
> Data movement: load, store, copy.
> Control: conditional/unconditional branch, subroutine call and return

Running time: on a particular input, it is the number of primitive
operations (steps) executed

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Order of growth: Focus on the important features
» Drop lower-order terms

> Ignore the constant coefficient in the leading term



Recall Last Lecture: Analysis of insertion sort

number of times

line executed
INSERTION-SORT(A, n) cost times based] on the
for j =2ton ¢ n value of j
key = A[j] © n-1
// Tnsert A[j] into the sorted sequence A[l..j —1]. 0 n—1
i=j—1 cg n—1
while i > 0 and A[i] > key s Z;;@
Ali +1] = A[i] ¢ Xj,t—1)
i=i—1 ¢ Yiati=1)
Ali + 1] = key cg n—1
Worst case: The array is in reverse sorted
n(n+1)—2
T(n)=an+ca(n—1)+c(n—1)+ q%

+ (e + C7)M +ea(n—1)= @(n2)

2
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DIVIDE-AND-CONQUER
Merge Sort
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DIVIDE-AND-CONQUER

Merge Sort

Lecture 3, 25.02.2025



DIVIDE-AND-CONQUER

Merge Sort
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DIVIDE-AND-CONQUER

Merge Sort
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Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems
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Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Lecture 3, 25.02.2025



Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force
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Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Combine the subproblem solutions to give a solution to the original
problem
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

Lecture 3, 25.02.2025



Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

NN 7|~Jﬁm
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

RN 7|~Jﬁm
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

|5247|<—J&>1326
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

5 2 7|<—J&>1326

4
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

|5247|<—%K>1326

A
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

5 2 7|<—J&>1326

4
N
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

5 2 7|<—J&>1326

4
8 A6
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

5 2 4 7 1 3 2 6]
55 & 7 — (133
' O 2
NS NS NS NS
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

5 2 4

7 13 2 6]

55 & 7 — (133

%—)

A
N N
|

2 4 5 7|
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

5 2 4 7 1 3 2 6]

55 & 7 — (133

N . N
T S
2 4 5 7] . 1 236
. —r—J
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To sort A[p...r]:

Divide by splitting into two subarrays A[p...q] and
Alg+1,...,r], where g is the halfway point of Alp...r]

Conquer by recursively sorting the two subarrays Alp...q] and
Alg+1,...r]

Combine by merging the two sorted subarrays Alp...q] and
Alg+1,...,r] to produce a singe sorted
subarray Alp...r]
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To sort A[p...r]:

Divide by splitting into two subarrays A[p...q] and
Alg+1,...,r], where g is the halfway point of Alp...r]

Conquer by recursively sorting the two subarrays Alp...q] and
Alg+1,...r]

Combine by merging the two sorted subarrays Alp...q] and
Alg+1,...,r] to produce a singe sorted
subarray Alp...r]

MERGE-SORT(4, p, 1)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,1) // combine

Lecture 3, 25.02.2025



What remains is the MERGE procedure to solve the “merge” problem:

Definition

INPUT: Array A and indices p < g < r such that subarrays
Alp...ql,Alg+1...r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in Alp...r].
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What remains is the MERGE procedure to solve the “merge” problem:

Definition

INPUT: Array A and indices p < g < r such that subarrays
Alp...ql,Alg+1...r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in Alp...r].

Example:
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What remains is the MERGE procedure to solve the “merge” problem:

Definition

INPUT: Array A and indices p < g < r such that subarrays
Alp...ql,Alq+1...r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in A[p...r].

Example:
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MERGE-SORT(4, p, 1)

Correctness of Merge-Sort itp<r .
Assuming MERGE is correct K/Il;RégalfS-ic-);')r/(AJ,p,q)

MERGE-SORT(A4,q + 1,7)
MERGE(4, p,q.T1)

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp. . .r]
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MERGE-SORT(4, p, 1)

Correctness of Merge-Sort itp<r .
Assuming MERGE is correct K/[;Régfs-g;)r/( AJ 2.9)

MERGE-SORT(A4,q + 1,7)
MERGE(4, p,q,71)

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp. . .r]

Proof by inductionon n=r—p
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MERGE-SORT(4, p, 1)

Correctness of Merge-Sort itp<r .
Assuming MERGE is correct K/[;Régfs-g;)r/( AJ 2.9)

MERGE-SORT(A4,q + 1,7)
MERGE(A4, p,q,1)

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp. . .r]

Proof by inductionon n=r—p

Base case n = 0: In this case r = p so A[p...r] is trivially sorted.
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MERGE-SORT(4, p, 1)

Correctness of Merge-Sort ifp<r
q=1(p+nr/2]
MERGE-SORT(4, p,q)
MERGE-SORT(A4,q + 1,7)
MERGE(A4, p,q,1)

Assuming MERGE is correct

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A,p,r) correctly sorts the numbers in Alp . .. r]

Proof by inductionon n=r —p
Base case n = 0: In this case r = p so A[p...r] is trivially sorted.

Inductive case: Assume statement true Vn € {0,1,..., k — 1} and prove the statement for n = k.

Lecture 3, 25.02.2025



MERGE-SORT(4, p, 1)

Correctness of Merge-Sort ifp<r
q=(p+r)/2]
MERGE-SORT(4, p,q)
MERGE-SORT(4,q + 1,1)
MERGE(A4, p,q,1)

Assuming MERGE is correct

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp...r]

Proof by inductionon n=r —p
Base case n = 0: In this case r = p so A[p...r] is trivially sorted.

Inductive case: Assume statement true Vn € {0,1,..., k — 1} and prove the statement for n = k.

> By induction hypothesis MERGE-SORT(A, p, q) and
MERGE-SORT(A, gq+1, r) successfully sort the two subarrays.
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MERGE-SORT(4, p, 1)

Correctness of Merge-Sort ifp<r
q=(p+r)/2]
MERGE-SORT(4, p,q)
MERGE-SORT(4,q + 1,1)
MERGE(A4, p,q,1)

Assuming MERGE is correct

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp...r]

Proof by inductionon n=r —p
Base case n = 0: In this case r = p so A[p...r] is trivially sorted.

Inductive case: Assume statement true Vn € {0,1,..., k — 1} and prove the statement for n = k.

> By induction hypothesis MERGE-SORT(A, p, q) and
MERGE-SORT(A, gq+1, r) successfully sort the two subarrays.
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MERGE-SORT(4, p, 1)
ifp<r

q=1[(p+r)/2]
MERGE-SORT (4, p,q)

MERGE-SORT(A4,q + 1,7)
MERGE(A, p,q,r1)

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp...r]

Proof by inductionon n=r —p
Base case n = 0: In this case r = p so A[p...r] is trivially sorted.

Inductive case: Assume statement true Vn € {0,1,...,k — 1} and prove the statement for n = k.

» By induction hypothesis MERGE-SORT(A, p, q) and
MERGE-SORT(A, gq+1, r) successfully sort the two subarrays.

» Therefore a correct merge procedure will successfully sort Alp...q]
as required.

p q r

41571112, 3]6




MERGE-SORT(4, p, 1)
ifp<r

q=1[(p+r)/2]
MERGE-SORT (4, p,q)

MERGE-SORT(A4,q + 1,7)
MERGE(A, p,q,r1)

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp...r]

Proof by inductionon n=r —p
Base case n = 0: In this case r = p so A[p...r] is trivially sorted.

Inductive case: Assume statement true Vn € {0,1,...,k — 1} and prove the statement for n = k.

» By induction hypothesis MERGE-SORT(A, p, q) and
MERGE-SORT(A, gq+1, r) successfully sort the two subarrays.

» Therefore a correct merge procedure will successfully sort Alp...q]
as required.

q r

21234567




|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile
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|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile
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|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile
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|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile
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|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile
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|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile
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|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile
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|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile
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|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile
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|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

> There are < n basic steps, since each basic step removes one card
from the input piles, and we started with n cards in the input pile

> Therefore the procedure should take 6(n) time
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

6

Lecture 3, 25.02.2025



Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

;
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

L2123 ||4]/5]|/6]|7

o] © [
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MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[ny +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
j=ij+1

Alpl Aldl Alr]
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MERGE(A, p.q,T1)
Merging Algorithm ottt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin;+1] = o
Ry + 1] = o0
i=1
j=1
fork = ptor

if L[i] < R[]

Alk] = L[i]
i=i+1

else A[k] = R[/]

J=Jj+1

Alp] Ald] Alr]
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MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
J=Jj+1

Alp] Ald] Alr]
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MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Al[p+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin, +1] = o0
Rln, + 1] = o0
i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
i=i+1
else A[k] = R[]
J=Jj+1

Alp] Ald] Alr]
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Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n, =r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
Lil=Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lln; + 1] = oo
Ry +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
i=i+1
else A[k] = R[]
J=Jj+1
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Merging Algorithm

MERGE(A4, p,q.r)
n=qg-p+1
n, =r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
Lli] = Alp+i—1]

for j = 1ton,
R[j] = Alg + j]
Ln, +1] = ©
R[n, + 1] = o0
i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = LI[i]
Alp] Ald] Alr] else i«l[?]l:llilj ]
Al 2 7 6 —
A
k
Li{2]a 00 3 o0
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Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin,+1] =00
Rln, + 1] = o0
i=1
j=1
fork = ptor

if L[i] = R[]

A[k] = L[i]
i=i+1

else A[k] = R[j]

j=Jj+1
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Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin,+1] =00
Rln, + 1] = o0
i=1
j=1
fork = ptor

if L[i] = R[]

A[k] = L[i]
i=i+1

else A[k] = R[j]

j=Jj+1
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MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
=l
Jg=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alp] Ala] Al oo A = T
j=Jj+1
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MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
=l
Jg=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alp] Ala] Al oo A = T
j=Jj+1
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Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin,+1] =00
Rln, + 1] = o0
i=1
j=1
fork = ptor

if L[i] = R[]

A[k] = L[i]
i=i+1

else A[k] = R[j]

j=Jj+1
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Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin,+1] =00
Rln, + 1] = o0
i=1
j=1
fork = ptor

if L[i] = R[]

A[k] = L[i]
i=i+1

else A[k] = R[j]

j=Jj+1
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MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
=l
Jg=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alp] Ala] Al oo A = T
j=Jj+1
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MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
=l
Jg=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alp] Ala] Al oo A = T
j=Jj+1
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MERGE(A, p,q,r)
Merging Algorithm A
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

Lii]=Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Ln;+1] =
Rln,+1] = o0
i =1
j=1
fork = ptor

if L[i] < R[/]

Alk] = L[i]
i=i+1

else A[k] = R[]

J=Jj+1

> Runtime analysis?
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MERGE(A, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] = o0
R[n, +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
J=Jj+l1

> Runtime analysis?

Merge runs in time ©(n) where n is the number of elements in the
subarray, i.e.,
n=r—p+1
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Analyzing divide-and-conquer algorithms
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Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:

> Let T(n) = “running time on a problem of size n"
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Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)
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Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)

> Otherwise, suppose we divide into a sub problems each of size n/b.
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Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)

> Otherwise, suppose we divide into a sub problems each of size n/b.

> Let D(n) be the time to divide and let C(n) the time to combine
solutions.

Lecture 3, 25.02.2025



Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)

> Otherwise, suppose we divide into a sub problems each of size n/b.

> Let D(n) be the time to divide and let C(n) the time to combine
solutions.

> We get the recurrence

{@(1) if n<c,

T(n) = aT(n/b)+ D(n) + C(n) otherwise.
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Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine
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Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)
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Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).
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Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case

q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(4, p,q,r) // combine
Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size

n/2=2T(n/2).
Combine: Merge on an n-element subarray takes ©(n) time

Lecture 3, 25.02.2025
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Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).

Combine: Merge on an n-element subarray takes ©(n) time

= C(n) = ©(n).
Recurrence for merge sort running time is
T(n) = o(1) if n= %,
2T(n/2) +©(n) otherwise.
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Comparing the Two Sorting Algorithms

worst-case running time in-place
Insertion Sort o(n?)

Merge Sort O(nlog n)
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Comparing the Two Sorting Algorithms

worst-case running time in-place
Insertion Sort o(n?)

Merge Sort O(nlog n)

> A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)
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Comparing the Two Sorting Algorithms

worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlog n)

> A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)
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Comparing the Two Sorting Algorithms

worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlog n) NO

> A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)
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Comparing the Two Sorting Algorithms

worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlog n) NO

> A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)

> |nsertion sort is incremental: having sorted the subarray A[1...j — 1], we
inserted the single element A[j] into its proper place, yielding the sorted
subarray A[1...j].

> Merge sort is divide-and-conquer: break the problem into smaller

subproblems and then combine the solutions to the subproblems
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SOLVING RECURRENCES
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SOLVING RECURRENCES

INDUCTION
INDUCTION
INDUCTION
INDUCTION

NEHER,
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SOLVING RECURRENCES

INDUCTION
INDUCTION
INDUCTION
INDUCTION
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Analysing Recurrences

As an example, we shall consider the following recurrence

ifn=1,

T =
(n) 2T(n/2) +c-n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
MERGE-SORT by selecting c sufficiently large and small, respectively.
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Analysing Recurrences

As an example, we shall consider the following recurrence

ifn=1,

T =
(n) 2T(n/2) +c-n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
MERGE-SORT by selecting c sufficiently large and small, respectively.
We shall solve recurrences by using three techniques:

> The substitution method

> Recursion trees

» Master method
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The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.
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The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
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The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
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The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
=2(2T(n/4)+c-n/2)+c-n
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The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
=2(2T(n/4)+c-n/2)+c-n=4T(n/4)+2-cn
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The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n

=2(2T(n/4)+c-n/2)+c-n=4T(n/4)+2-cn
=4(2T(n/8)+c-n/4)+2-cn=8T(n/8)+3-cn
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The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
=2(2T(n/4)+c-n/2)+c-n=4T(n/4)+2-cn
=4(2T(n/8)+c-n/4)+2-cn=8T(n/8)+3-cn

Hmm it seems like
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The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
=2(2T(n/4)+c-n/2)+c-n=4T(n/4)+2-cn
=4(2T(n/8)+c-n/4)+2-cn=8T(n/8)+3-cn

Hmm it seems like
=25T(n/2*) + k - cn

A qualified guess is that T(n) = ©(nlogn)
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The substitution method: proof of guess

Upper bound
There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Lecture 3, 25.02.2025



The substitution method: proof of guess
Upper bound
There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.
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The substitution method: proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.

Inductive step: Assume statement true Vn € {2,3, ..., k — 1} and prove the statement for n = k.
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The substitution method: proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.

Inductive step: Assume statement true Vn € {2,3, ..., k — 1} and prove the statement for n = k.

T(n)=2T(n/2)+ cn
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The substitution method: proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.

Inductive step: Assume statement true Vn € {2,3, ..., k — 1} and prove the statement for n = k.
T(n)=2T(n/2)+ cn
<2. % log(n/2)+c-n=a-nlog(n/2)+ cn
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The substitution method: proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.

Inductive step: Assume statement true Vn € {2,3, ..., k — 1} and prove the statement for n = k.
T(n)=2T(n/2)+ cn
<2. % log(n/2)+c-n=a-nlog(n/2)+ cn

=a-nlogn—an+cn
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The substitution method: proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.

Inductive step: Assume statement true vn € {2,3, . . ., k — 1} and prove the statement for n = k.
T(n)=2T(n/2)+ cn
<2. % log(n/2)+c-n=a-nlog(n/2)+ cn
=a-nlogn—an+cn

<a-nlogn (if we select a > ¢)

We can thus select a to be a positive constant so that both the base

cases and the inductive step holds. Hence, T(n) = O(nlog n)
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The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n
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The substitution method: proof of guess
Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.
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The substitution method: proof of guess
Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.

Inductive step: Assume statement true Vn € {0,1, ..., k — 1} and prove the statement for n = k.
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The substitution method: proof of guess
Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.

Inductive step: Assume statement true Vn € {0,1, ..., k — 1} and prove the statement for n = k.

T(n)=2T(n/2) +cn

Lecture 3, 25.02.2025



The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.

Inductive step: Assume statement true Vn € {0,1, ..., k — 1} and prove the statement for n = k.
T(n)=2T(n/2) + cn

>2. % log(n/2)+c-n=b-nlog(n/2) + cn
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The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.

Inductive step: Assume statement true Vn € {0,1, ..., k — 1} and prove the statement for n = k.
T(n)=2T(n/2) + cn

22.%|0g(n/2)+c-n: b-nlog(n/2) + cn
=b-nlogn—bn+cn
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The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.

Inductive step: Assume statement true vn € {0,1,. . ., k — 1} and prove the statement for n = k.
T(n)=2T(n/2) + cn
>2. % log(n/2) +c-n=b-nlog(n/2)+ cn
=b-nlogn—bn+cn
>b-nlogn (if we select b < ¢)

We can thus select b to be a positive constant so that both the base

cases and the inductive step holds. Hence, T(n) = Q(nlog n)
Lecture 3, 25.02.2025



Common mistake using the substitution method

Be careful when using asymptotic notation!
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Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T(n) = 4T(n/4) + n, that
T(n) = O(n):

T(n) <4(c(n/4))+n
<cn+n= 0(n) wrong!
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Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T(n) = 4T(n/4) + n, that
T(n) = O(n):

T(n) <4(c(n/4))+n
<cn+n= 0(n) wrong!

Because we haven't proven the exact form of our inductive hypothesis
(which is that T(n) < cn), this proof is false

Lecture 3, 25.02.2025



Recursion trees

Another way to generate a guess. Then verify by substitution method.

> Each node corresponds to the cost of a subproblem

> We sum the costs within each level of the tree to obtain a set of
per-level costs,

> then we sum all the per-level costs to determine the total cost of all
levels of the recursion.
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

cn

Lecture 3, 25.02.2025



Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

cn

cn/?2 cn/2
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

cn
cn/?2 cn/2

VAN VAN
cn/4 cn/4 cn/4 cn/4
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

cn

cn/?2 cn/2
VAN VRN

cn/4 cn/4 cn/4 cn/4
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
| | | | | | | | | | | | | | | |
T(1) T(1) T(1) TQ) T(Q) T(1) T(1) TQ) T(Q) T(1) T(1) TA) TQ) T(1) T(1) T(1)
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

2~ cn

cn/?2 cn/2
VAN VAN
cn/4 cn/4 cn/4 cn/4

o) /N /N /NN

[ T T T T T A e e |

[ T T T T T L A T e |

[ T T T T T L O T e |

[ T T T T e |

(N e T R e e e |

(R N T T e e |

[ T T e e e

[ N e e e

[ N e e e
v T(1) T(1) T(Q) T() T(1) T(Q) T(Q) TQ) T(1) T(1) T(1) TQ) T() T(1) T(1) T(1)
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

2~ cn

cn/?2 cn/2
VAN VAN
cn/4 cn/4 cn/4 cn/4

o) /N /N /NN

[ T T T T T A e e |

[ T T T T T L A T e |

[ T T T T T L O T e |

[ T T T T e |

(N e T R e e e |

(R N T T e e |

[ T T e e e

[ N e e e

[ N e e e
v T(1) T(1) T(Q) T() T(1) T(Q) T(Q) TQ) T(1) T(1) T(1) TQ) T() T(1) T(1) T(1)

ology(n) — p
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

N cn cn
cn/2 cn/2 cn

VRN 7N
cn/4 cn/4 cn/4 cn/4 cn

o) /N /N /NN

I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
v T() T() T() T() T(1) T() T() T() T() T(1) TW) T(1) T() T(1) T() T(1) cn
ology(n) —
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

N cn cn
cn/2 cn/2 cn

VRN 7N
cn/4 cn/4 cn/4 cn/4 cn

o) /N /N /NN

[ R e e
T(1) T(1) T(Q) T() T(1) T(Q) T(Q) TQ) T(1) T(1) T(1) TQ) T() T(1) T(1) T(1) cn

ology(n) — p

Qualified guess: T(n) = cnlog, n = ©(nlog n)
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/Cn\

cn/3 c2n/3
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/////’ N
cn/3 c2n/3

VAN VRN
cn/9 c2n/9 c2n/9 c4n/9
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn

/ \

cn/3 c2n/3 - cn
VAN VAN

cn/9 c2n/9 c2n/9 c4n/9 — ¢n

- cn
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn

/ \

cn/3 c2n/3 - cn
VAN VAN

cn/9 c2n/9 c2n/9 c4n/9 — ¢n

T

leftmost branch peters
out after logz n levels

- cn
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ cn
cn/3 c2n/3 cn
VAN VRN
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logz n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logz n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.

» Each level contributes ~ cn
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logz n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.

> Each level contributes =~ cn
Qualified guess: exist positive constants a, b so that
a-nlogg(n) < T(n) < b-nlogy,, n= T(n)=0O(nlogn)
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds

> If f(n) = O(n'°% 2—<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% 2—<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'"8b2), then T(n) = ©(n'°8s? log n)
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by

the recurrence
T(n) = aT(n/b) + f(n).

Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% 2—<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'"8b2), then T(n) = ©(n'°8s? log n)

> If f(n) = Q(n'°%b 2+€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% 2—<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'°8s2), then T(n) = ©(n'°¢b2? log n)

> If f(n) = Q(n'°%b 2+€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn
> f(n)=0(n) and a= b =2 so log,(a) = 1 and f(n) = O(n'°&:(2)).
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Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Let a>1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by

the recurrence
T(n) = aT(n/b) + f(n).

Then, T(n) has the following asymptotic bounds
If f(n) = O(n'°82=<) for some constant e > 0, then T(n) = ©(n°¢s2)
If f(n) = ©(n'°8b2), then T(n) = ©(n'°%? log n)

If f(n) = Q(n'°8>3*€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) =c and T(n) =2T(n/2) + cn
f(n) = O(n) and a = b =2 so log,(a) = 1 and f(n) = O(n'°e:(2)).
By Master theorem, we have T(n) = ©(nlogn) :) y
A



> Divide-and-conquer simple but powerful algorithmic paradigm
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> Divide-and-conquer simple but powerful algorithmic paradigm

> Solving the recurrence for merge sort shows that it runs in time
©(nlogn), i.e., much faster than Insertion sort for large instances
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> Divide-and-conquer simple but powerful algorithmic paradigm

> Solving the recurrence for merge sort shows that it runs in time
©(nlogn), i.e., much faster than Insertion sort for large instances

> For small instances insertion sort can still be faster
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v

Divide-and-conquer simple but powerful algorithmic paradigm

v

Solving the recurrence for merge sort shows that it runs in time
©(nlogn), i.e., much faster than Insertion sort for large instances

v

For small instances insertion sort can still be faster

v

Solving recurrences fun but delicate
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