Algorithms: Divide-and-Conquer (Merge-Sort)

Alessandro Chiesa, Ola Svensson

=PrL

School of Computer and Communication Sciences

Lecture 3, 25.02.2025

CalculateSum(n):

.ans =0

1

2. fori=1,2,...,n
3. ans = ans + i
4

Often used for proof of correctness in presence of loops . return ans

Loop invariant = “a statement that is satisfied during the loop”

Ex: At the start of each iteration ans = (i — 1) * i/2

Need to verify (similar to induction)

Initialization: True at the beginning of the 1st iteration of the loop

Maintenance: If it is true before an iteration of the loop, it remains true
before the next iteration.

Termination: When the loop terminates, the invariant — usually along
with the reason that the loop terminated — gives us a useful property
that helps show that the algorithm is correct.

Recall Last Lecture: Loop Invariant

The difficulty is often to come up with the right loop invariant

Lecture 3, 25.02.2025

Recall Last Lecture: Loop Invariant

The difficulty is often to come up with the right loop invariant

INSERTION-SORT (A, n)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j—-1
wlu'le]i > 0and A[i] > key
Ali + 1] = A[i]
i=i-1

Ali + 1] = key

Lecture 3, 25.02.2025

Recall Last Lecture: Loop Invariant

The difficulty is often to come up with the right loop invariant

INSERTION-SORT (A, n)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j—-1
while]i > 0and A[i] > key
Ali + 1] = Ali]
i=i-1

Ali + 1] = key

Loop invariant:

At the start of each iteration of the “outer” for loop — the loop
indexed by j— the subarrary A[l...,j — 1] consists of the elements
originally in A[1,...,j — 1] but in sorted order.

Lecture 3, 25.02.2025

Recall Last Lecture: Loop Invariant

The difficulty is often to come up with the right loop invariant

Linear-Search(4,v)

1 for i< 1 to length(A)
2 if A[i] = v then

3 return |

4 return NIL

Lecture 3, 25.02.2025

Recall Last Lecture: Loop Invariant

The difficulty is often to come up with the right loop invariant

Linear-Search(4,v)

1 for i < 1 to length(A)
2 if A[i] = v then

3 return |

4 return NIL

Loop invariant:

At the start of each iteration of the for loop we have A[j] # v for all
j<i.

Lecture 3, 25.02.2025

Random-access machine (RAM) model
> Instructions are executed one after another

» Simplification basic instructions take constant (O(1)) time

> Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
> Data movement: load, store, copy.
> Control: conditional/unconditional branch, subroutine call and return

Running time: on a particular input, it is the number of primitive
operations (steps) executed

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Order of growth: Focus on the important features
» Drop lower-order terms

> Ignore the constant coefficient in the leading term

Recall Last Lecture: Analysis of insertion sort

number of times

line executed
INSERTION-SORT(A, n) cost times based] on the
for j =2ton ¢ n value of j
key = A[j] © n-1
// Tnsert A[j] into the sorted sequence A[l..j —1]. 0 n—1
i=j—1 cg n—1
while i > 0 and A[i] > key s Z;;@
Ali +1] = A[i] ¢ Xj,t—1)
i=i—1 ¢ Yiati=1)
Ali + 1] = key cg n—1
Worst case: The array is in reverse sorted
n(n+1)—2
T(n)=an+ca(n—1)+c(n—1)+ q%

+ (e + C7)M +ea(n—1)= @(n2)

2

Lecture 3, 25.02.2025

DIVIDE-AND-CONQUER
Merge Sort

Lecture 3, 25.02.2025

DIVIDE-AND-CONQUER

Merge Sort

Lecture 3, 25.02.2025

DIVIDE-AND-CONQUER

Merge Sort

Lecture 3, 25.02.2025

DIVIDE-AND-CONQUER

Merge Sort

Lecture 3, 25.02.2025

Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Lecture 3, 25.02.2025

Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Lecture 3, 25.02.2025

Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Lecture 3, 25.02.2025

Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Combine the subproblem solutions to give a solution to the original
problem

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

NN 7|~Jﬁm

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

RN 7|~Jﬁm

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

|5247|<—J&>1326

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

5 2 7|<—J&>1326

4

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

|5247|<—%K>1326

A

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

5 2 7|<—J&>1326

4
N

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

5 2 7|<—J&>1326

4
8 A6

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

5 2 4 7 1 3 2 6]
55 & 7 — (133
' O 2
NS NS NS NS

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

5 2 4

7 13 2 6]

55 & 7 — (133

%—)

A
N N
|

2 4 5 7|

Lecture 3, 25.02.2025

N
(@)}

/
.

=11

K
]
o

N
(o)

—_
N
w
(@)}

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

5 2 4 7 1 3 2 6]

55 & 7 — (133

N . N
T S
2 4 5 7] . 1 236
. —r—J

Lecture 3, 25.02.2025

To sort A[p...r]:

Divide by splitting into two subarrays A[p...q] and
Alg+1,...,r], where g is the halfway point of Alp...r]

Conquer by recursively sorting the two subarrays Alp...q] and
Alg+1,...r]

Combine by merging the two sorted subarrays Alp...q] and
Alg+1,...,r] to produce a singe sorted
subarray Alp...r]

Lecture 3, 25.02.2025

To sort A[p...r]:

Divide by splitting into two subarrays A[p...q] and
Alg+1,...,r], where g is the halfway point of Alp...r]

Conquer by recursively sorting the two subarrays Alp...q] and
Alg+1,...r]

Combine by merging the two sorted subarrays Alp...q] and
Alg+1,...,r] to produce a singe sorted
subarray Alp...r]

MERGE-SORT(4, p, 1)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,1) // combine

Lecture 3, 25.02.2025

What remains is the MERGE procedure to solve the “merge” problem:

Definition

INPUT: Array A and indices p < g < r such that subarrays
Alp...ql,Alg+1...r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in Alp...r].

Lecture 3, 25.02.2025

What remains is the MERGE procedure to solve the “merge” problem:

Definition

INPUT: Array A and indices p < g < r such that subarrays
Alp...ql,Alg+1...r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in Alp...r].

Example:

Lecture 3, 25.02.2025

What remains is the MERGE procedure to solve the “merge” problem:

Definition

INPUT: Array A and indices p < g < r such that subarrays
Alp...ql,Alq+1...r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in A[p...r].

Example:

Lecture 3, 25.02.2025

MERGE-SORT(4, p, 1)

Correctness of Merge-Sort itp<r .
Assuming MERGE is correct K/Il;RégalfS-ic-);')r/(AJ,p,q)

MERGE-SORT(A4,q + 1,7)
MERGE(4, p,q.T1)

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp. . .r]

Lecture 3, 25.02.2025

MERGE-SORT(4, p, 1)

Correctness of Merge-Sort itp<r .
Assuming MERGE is correct K/[;Régfs-g;)r/(AJ 2.9)

MERGE-SORT(A4,q + 1,7)
MERGE(4, p,q,71)

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp. . .r]

Proof by inductionon n=r—p

Lecture 3, 25.02.2025

MERGE-SORT(4, p, 1)

Correctness of Merge-Sort itp<r .
Assuming MERGE is correct K/[;Régfs-g;)r/(AJ 2.9)

MERGE-SORT(A4,q + 1,7)
MERGE(A4, p,q,1)

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp. . .r]

Proof by inductionon n=r—p

Base case n = 0: In this case r = p so A[p...r] is trivially sorted.

Lecture 3, 25.02.2025

MERGE-SORT(4, p, 1)

Correctness of Merge-Sort ifp<r
q=1(p+nr/2]
MERGE-SORT(4, p,q)
MERGE-SORT(A4,q + 1,7)
MERGE(A4, p,q,1)

Assuming MERGE is correct

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A,p,r) correctly sorts the numbers in Alp . .. r]

Proof by inductionon n=r —p
Base case n = 0: In this case r = p so A[p...r] is trivially sorted.

Inductive case: Assume statement true Vn € {0,1,..., k — 1} and prove the statement for n = k.

Lecture 3, 25.02.2025

MERGE-SORT(4, p, 1)

Correctness of Merge-Sort ifp<r
q=(p+r)/2]
MERGE-SORT(4, p,q)
MERGE-SORT(4,q + 1,1)
MERGE(A4, p,q,1)

Assuming MERGE is correct

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp...r]

Proof by inductionon n=r —p
Base case n = 0: In this case r = p so A[p...r] is trivially sorted.

Inductive case: Assume statement true Vn € {0,1,..., k — 1} and prove the statement for n = k.

> By induction hypothesis MERGE-SORT(A, p, q) and
MERGE-SORT(A, gq+1, r) successfully sort the two subarrays.

Lecture 3, 25.02.2025

MERGE-SORT(4, p, 1)

Correctness of Merge-Sort ifp<r
q=(p+r)/2]
MERGE-SORT(4, p,q)
MERGE-SORT(4,q + 1,1)
MERGE(A4, p,q,1)

Assuming MERGE is correct

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp...r]

Proof by inductionon n=r —p
Base case n = 0: In this case r = p so A[p...r] is trivially sorted.

Inductive case: Assume statement true Vn € {0,1,..., k — 1} and prove the statement for n = k.

> By induction hypothesis MERGE-SORT(A, p, q) and
MERGE-SORT(A, gq+1, r) successfully sort the two subarrays.

Lecture 3, 25.02.2025

MERGE-SORT(4, p, 1)
ifp<r

q=1[(p+r)/2]
MERGE-SORT (4, p,q)

MERGE-SORT(A4,q + 1,7)
MERGE(A, p,q,r1)

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp...r]

Proof by inductionon n=r —p
Base case n = 0: In this case r = p so A[p...r] is trivially sorted.

Inductive case: Assume statement true Vn € {0,1,...,k — 1} and prove the statement for n = k.

» By induction hypothesis MERGE-SORT(A, p, q) and
MERGE-SORT(A, gq+1, r) successfully sort the two subarrays.

» Therefore a correct merge procedure will successfully sort Alp...q]
as required.

p q r

41571112, 3]6

MERGE-SORT(4, p, 1)
ifp<r

q=1[(p+r)/2]
MERGE-SORT (4, p,q)

MERGE-SORT(A4,q + 1,7)
MERGE(A, p,q,r1)

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp...r]

Proof by inductionon n=r —p
Base case n = 0: In this case r = p so A[p...r] is trivially sorted.

Inductive case: Assume statement true Vn € {0,1,...,k — 1} and prove the statement for n = k.

» By induction hypothesis MERGE-SORT(A, p, q) and
MERGE-SORT(A, gq+1, r) successfully sort the two subarrays.

» Therefore a correct merge procedure will successfully sort Alp...q]
as required.

q r

21234567

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 3, 25.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 3, 25.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 3, 25.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 3, 25.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 3, 25.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 3, 25.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 3, 25.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 3, 25.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 3, 25.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

> There are < n basic steps, since each basic step removes one card
from the input piles, and we started with n cards in the input pile

> Therefore the procedure should take 6(n) time

Lecture 3, 25.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 3, 25.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 3, 25.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 3, 25.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 3, 25.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

6

Lecture 3, 25.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

;

Lecture 3, 25.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 3, 25.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 3, 25.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 3, 25.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

L2123 ||4]/5]|/6]|7

o] © [

Lecture 3, 25.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[ny +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
j=ij+1

Alpl Aldl Alr]

Lecture 3, 25.02.2025

MERGE(A, p.q,T1)
Merging Algorithm ottt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin;+1] = o
Ry + 1] = o0
i=1
j=1
fork = ptor

if L[i] < R[]

Alk] = L[i]
i=i+1

else A[k] = R[/]

J=Jj+1

Alp] Ald] Alr]

Lecture 3, 25.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
J=Jj+1

Alp] Ald] Alr]

Lecture 3, 25.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Al[p+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin, +1] = o0
Rln, + 1] = o0
i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
i=i+1
else A[k] = R[]
J=Jj+1

Alp] Ald] Alr]

Lecture 3, 25.02.2025

Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n, =r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
Lil=Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lln; + 1] = oo
Ry +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
i=i+1
else A[k] = R[]
J=Jj+1

Lecture 3, 25.02.2025

Merging Algorithm

MERGE(A4, p,q.r)
n=qg-p+1
n, =r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
Lli] = Alp+i—1]

for j = 1ton,
R[j] = Alg + j]
Ln, +1] = ©
R[n, + 1] = o0
i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = LI[i]
Alp] Ald] Alr] else i«l[?]l:llilj]
Al 2 7 6 —
A
k
Li{2]a 00 3 o0

Lecture 3, 25.02.2025

Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin,+1] =00
Rln, + 1] = o0
i=1
j=1
fork = ptor

if L[i] = R[]

A[k] = L[i]
i=i+1

else A[k] = R[j]

j=Jj+1

Lecture 3, 25.02.2025

Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin,+1] =00
Rln, + 1] = o0
i=1
j=1
fork = ptor

if L[i] = R[]

A[k] = L[i]
i=i+1

else A[k] = R[j]

j=Jj+1

Lecture 3, 25.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
=l
Jg=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alp] Ala] Al oo A = T
j=Jj+1

Lecture 3, 25.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
=l
Jg=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alp] Ala] Al oo A = T
j=Jj+1

Lecture 3, 25.02.2025

Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin,+1] =00
Rln, + 1] = o0
i=1
j=1
fork = ptor

if L[i] = R[]

A[k] = L[i]
i=i+1

else A[k] = R[j]

j=Jj+1

Lecture 3, 25.02.2025

Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin,+1] =00
Rln, + 1] = o0
i=1
j=1
fork = ptor

if L[i] = R[]

A[k] = L[i]
i=i+1

else A[k] = R[j]

j=Jj+1

Lecture 3, 25.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
=l
Jg=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alp] Ala] Al oo A = T
j=Jj+1

Lecture 3, 25.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
=l
Jg=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alp] Ala] Al oo A = T
j=Jj+1

Lecture 3, 25.02.2025

MERGE(A, p,q,r)
Merging Algorithm A
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

Lii]=Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Ln;+1] =
Rln,+1] = o0
i =1
j=1
fork = ptor

if L[i] < R[/]

Alk] = L[i]
i=i+1

else A[k] = R[]

J=Jj+1

> Runtime analysis?

Lecture 3, 25.02.2025

MERGE(A, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] = o0
R[n, +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
J=Jj+l1

> Runtime analysis?

Merge runs in time ©(n) where n is the number of elements in the
subarray, i.e.,
n=r—p+1

Lecture 3, 25.02.2025

Analyzing divide-and-conquer algorithms

Lecture 3, 25.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:

> Let T(n) = “running time on a problem of size n"

Lecture 3, 25.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)

Lecture 3, 25.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)

> Otherwise, suppose we divide into a sub problems each of size n/b.

Lecture 3, 25.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)

> Otherwise, suppose we divide into a sub problems each of size n/b.

> Let D(n) be the time to divide and let C(n) the time to combine
solutions.

Lecture 3, 25.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)

> Otherwise, suppose we divide into a sub problems each of size n/b.

> Let D(n) be the time to divide and let C(n) the time to combine
solutions.

> We get the recurrence

{@(1) if n<c,

T(n) = aT(n/b)+ D(n) + C(n) otherwise.

Lecture 3, 25.02.2025

Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Lecture 3, 25.02.2025

Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Lecture 3, 25.02.2025

Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).

Lecture 3, 25.02.2025

Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case

q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(4, p,q,r) // combine
Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size

n/2=2T(n/2).
Combine: Merge on an n-element subarray takes ©(n) time

Lecture 3, 25.02.2025

= C(n) = ©(n).

Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).

Combine: Merge on an n-element subarray takes ©(n) time

= C(n) = ©(n).
Recurrence for merge sort running time is
T(n) = o(1) if n= %,
2T(n/2) +©(n) otherwise.

Lecture 3, 25.02.2025

Comparing the Two Sorting Algorithms

worst-case running time in-place
Insertion Sort o(n?)

Merge Sort O(nlog n)

Lecture 3, 25.02.2025

Comparing the Two Sorting Algorithms

worst-case running time in-place
Insertion Sort o(n?)

Merge Sort O(nlog n)

> A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)

Lecture 3, 25.02.2025

Comparing the Two Sorting Algorithms

worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlog n)

> A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)

Lecture 3, 25.02.2025

Comparing the Two Sorting Algorithms

worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlog n) NO

> A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)

Lecture 3, 25.02.2025

Comparing the Two Sorting Algorithms

worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlog n) NO

> A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)

> |nsertion sort is incremental: having sorted the subarray A[1...j — 1], we
inserted the single element A[j] into its proper place, yielding the sorted
subarray A[1...j].

> Merge sort is divide-and-conquer: break the problem into smaller

subproblems and then combine the solutions to the subproblems

Lecture 3, 25.02.2025

SOLVING RECURRENCES

~~~~~~~

Lecture 3, 25.02.2025



SOLVING RECURRENCES

~~~~~~~

IIIIIIIII

Lecture 3, 25.02.2025

SOLVING RECURRENCES

|||||||||
INDUCTION

Lecture 3, 25.02.2025

SOLVING RECURRENCES

|||||||||
INDUCTION
INDUCTION

Lecture 3, 25.02.2025

SOLVING RECURRENCES

|||||||||
INDUCTION
INDUCTION
INDUCTION

Lecture 3, 25.02.2025

SOLVING RECURRENCES

INDUCTION
INDUCTION
INDUCTION
INDUCTION

Lecture 3, 25.02.2025

SOLVING RECURRENCES

oucrion
INDUCTION
ity
INDUCTION

Lecture 3, 25.02.2025

SOLVING RECURRENCES

INDUCTION
INDUCTION
INDUCTION
INDUCTION

NBUCTIEN

SOLVING RECURRENCES

INDUCTION
INDUCTION
INDUCTION
INDUCTION

NEHER,

Lecture 3, 25.02.2025

SOLVING RECURRENCES

INDUCTION
INDUCTION
INDUCTION
INDUCTION

Bk

Lecture 3, 25.02.2025

Analysing Recurrences

As an example, we shall consider the following recurrence

ifn=1,

T =
(n) 2T(n/2) +c-n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
MERGE-SORT by selecting c sufficiently large and small, respectively.

Lecture 3, 25.02.2025

Analysing Recurrences

As an example, we shall consider the following recurrence

ifn=1,

T =
(n) 2T(n/2) +c-n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
MERGE-SORT by selecting c sufficiently large and small, respectively.
We shall solve recurrences by using three techniques:

> The substitution method

> Recursion trees

» Master method

Lecture 3, 25.02.2025

The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

Lecture 3, 25.02.2025

The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n

Lecture 3, 25.02.2025

The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n

Lecture 3, 25.02.2025

The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
=2(2T(n/4)+c-n/2)+c-n

Lecture 3, 25.02.2025

The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
=2(2T(n/4)+c-n/2)+c-n=4T(n/4)+2-cn

Lecture 3, 25.02.2025

The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n

=2(2T(n/4)+c-n/2)+c-n=4T(n/4)+2-cn
=4(2T(n/8)+c-n/4)+2-cn=8T(n/8)+3-cn

Lecture 3, 25.02.2025

The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
=2(2T(n/4)+c-n/2)+c-n=4T(n/4)+2-cn
=4(2T(n/8)+c-n/4)+2-cn=8T(n/8)+3-cn

Hmm it seems like

Lecture 3, 25.02.2025

The substitution method

> Guess the form of the solution

> Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
=2(2T(n/4)+c-n/2)+c-n=4T(n/4)+2-cn
=4(2T(n/8)+c-n/4)+2-cn=8T(n/8)+3-cn

Hmm it seems like
=25T(n/2*) + k - cn

A qualified guess is that T(n) = ©(nlogn)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound
There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Lecture 3, 25.02.2025

The substitution method: proof of guess
Upper bound
There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.

Inductive step: Assume statement true Vn € {2,3, ..., k — 1} and prove the statement for n = k.

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.

Inductive step: Assume statement true Vn € {2,3, ..., k — 1} and prove the statement for n = k.

T(n)=2T(n/2)+ cn

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.

Inductive step: Assume statement true Vn € {2,3, ..., k — 1} and prove the statement for n = k.
T(n)=2T(n/2)+ cn
<2. % log(n/2)+c-n=a-nlog(n/2)+ cn

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.

Inductive step: Assume statement true Vn € {2,3, ..., k — 1} and prove the statement for n = k.
T(n)=2T(n/2)+ cn
<2. % log(n/2)+c-n=a-nlog(n/2)+ cn

=a-nlogn—an+cn

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.

Inductive step: Assume statement true vn € {2,3, . . ., k — 1} and prove the statement for n = k.
T(n)=2T(n/2)+ cn
<2. % log(n/2)+c-n=a-nlog(n/2)+ cn
=a-nlogn—an+cn

<a-nlogn (if we select a > ¢)

We can thus select a to be a positive constant so that both the base

cases and the inductive step holds. Hence, T(n) = O(nlog n)
Lecture 3, 25.02.2025

The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Lecture 3, 25.02.2025

The substitution method: proof of guess
Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.

Lecture 3, 25.02.2025

The substitution method: proof of guess
Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.

Inductive step: Assume statement true Vn € {0,1, ..., k — 1} and prove the statement for n = k.

Lecture 3, 25.02.2025

The substitution method: proof of guess
Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.

Inductive step: Assume statement true Vn € {0,1, ..., k — 1} and prove the statement for n = k.

T(n)=2T(n/2) +cn

Lecture 3, 25.02.2025

The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.

Inductive step: Assume statement true Vn € {0,1, ..., k — 1} and prove the statement for n = k.
T(n)=2T(n/2) + cn

>2. % log(n/2)+c-n=b-nlog(n/2) + cn

Lecture 3, 25.02.2025

The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.

Inductive step: Assume statement true Vn € {0,1, ..., k — 1} and prove the statement for n = k.
T(n)=2T(n/2) + cn

22.%|0g(n/2)+c-n: b-nlog(n/2) + cn
=b-nlogn—bn+cn

Lecture 3, 25.02.2025

The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.

Inductive step: Assume statement true vn € {0,1,. . ., k — 1} and prove the statement for n = k.
T(n)=2T(n/2) + cn
>2. % log(n/2) +c-n=b-nlog(n/2)+ cn
=b-nlogn—bn+cn
>b-nlogn (if we select b < ¢)

We can thus select b to be a positive constant so that both the base

cases and the inductive step holds. Hence, T(n) = Q(nlog n)
Lecture 3, 25.02.2025

Common mistake using the substitution method

Be careful when using asymptotic notation!

Lecture 3, 25.02.2025

Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T(n) = 4T(n/4) + n, that
T(n) = O(n):

T(n) <4(c(n/4))+n
<cn+n= 0(n) wrong!

Lecture 3, 25.02.2025

Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T(n) = 4T(n/4) + n, that
T(n) = O(n):

T(n) <4(c(n/4))+n
<cn+n= 0(n) wrong!

Because we haven't proven the exact form of our inductive hypothesis
(which is that T(n) < cn), this proof is false

Lecture 3, 25.02.2025

Recursion trees

Another way to generate a guess. Then verify by substitution method.

> Each node corresponds to the cost of a subproblem

> We sum the costs within each level of the tree to obtain a set of
per-level costs,

> then we sum all the per-level costs to determine the total cost of all
levels of the recursion.

Lecture 3, 25.02.2025

Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

Lecture 3, 25.02.2025

Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

cn

Lecture 3, 25.02.2025

Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

cn

cn/?2 cn/2

Lecture 3, 25.02.2025

Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

cn
cn/?2 cn/2

VAN VAN
cn/4 cn/4 cn/4 cn/4

Lecture 3, 25.02.2025

Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

cn

cn/?2 cn/2
VAN VRN

cn/4 cn/4 cn/4 cn/4
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
| | | | | | | | | | | | | | | |
T(1) T(1) T(1) TQ) T(Q) T(1) T(1) TQ) T(Q) T(1) T(1) TA) TQ) T(1) T(1) T(1)

Lecture 3, 25.02.2025

Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

2~ cn

cn/?2 cn/2
VAN VAN
cn/4 cn/4 cn/4 cn/4

o) /N /N /NN

[T T T T T A e e |

[T T T T T L A T e |

[T T T T T L O T e |

[T T T T e |

(N e T R e e e |

(R N T T e e |

[T T e e e

[N e e e

[N e e e
v T(1) T(1) T(Q) T() T(1) T(Q) T(Q) TQ) T(1) T(1) T(1) TQ) T() T(1) T(1) T(1)

Lecture 3, 25.02.2025

Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

2~ cn

cn/?2 cn/2
VAN VAN
cn/4 cn/4 cn/4 cn/4

o) /N /N /NN

[T T T T T A e e |

[T T T T T L A T e |

[T T T T T L O T e |

[T T T T e |

(N e T R e e e |

(R N T T e e |

[T T e e e

[N e e e

[N e e e
v T(1) T(1) T(Q) T() T(1) T(Q) T(Q) TQ) T(1) T(1) T(1) TQ) T() T(1) T(1) T(1)

ology(n) — p

Lecture 3, 25.02.2025

Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

N cn cn
cn/2 cn/2 cn

VRN 7N
cn/4 cn/4 cn/4 cn/4 cn

o) /N /N /NN

I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
v T() T() T() T() T(1) T() T() T() T() T(1) TW) T(1) T() T(1) T() T(1) cn
ology(n) —

Lecture 3, 25.02.2025

Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

N cn cn
cn/2 cn/2 cn

VRN 7N
cn/4 cn/4 cn/4 cn/4 cn

o) /N /N /NN

[R e e
T(1) T(1) T(Q) T() T(1) T(Q) T(Q) TQ) T(1) T(1) T(1) TQ) T() T(1) T(1) T(1) cn

ology(n) — p

Qualified guess: T(n) = cnlog, n = ©(nlog n)

Lecture 3, 25.02.2025

Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

Lecture 3, 25.02.2025

Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn

Lecture 3, 25.02.2025

Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/Cn\

cn/3 c2n/3

Lecture 3, 25.02.2025

Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/////’ N
cn/3 c2n/3

VAN VRN
cn/9 c2n/9 c2n/9 c4n/9

Lecture 3, 25.02.2025

Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn

/ \

cn/3 c2n/3 - cn
VAN VAN

cn/9 c2n/9 c2n/9 c4n/9 — ¢n

- cn

Lecture 3, 25.02.2025

Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn

/ \

cn/3 c2n/3 - cn
VAN VAN

cn/9 c2n/9 c2n/9 c4n/9 — ¢n

T

leftmost branch peters
out after logz n levels

- cn

Lecture 3, 25.02.2025

Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ cn
cn/3 c2n/3 cn
VAN VRN
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels

Lecture 3, 25.02.2025

Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logz n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.

Lecture 3, 25.02.2025

Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logz n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.

» Each level contributes ~ cn

Lecture 3, 25.02.2025

Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logz n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.

> Each level contributes =~ cn
Qualified guess: exist positive constants a, b so that
a-nlogg(n) < T(n) < b-nlogy,, n= T(n)=0O(nlogn)

Lecture 3, 25.02.2025

Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Lecture 3, 25.02.2025

Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds

Lecture 3, 25.02.2025

Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds

> If f(n) = O(n'°% 2—<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)

Lecture 3, 25.02.2025

Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% 2—<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'"8b2), then T(n) = ©(n'°8s? log n)

Lecture 3, 25.02.2025

Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by

the recurrence
T(n) = aT(n/b) + f(n).

Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% 2—<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'"8b2), then T(n) = ©(n'°8s? log n)

> If f(n) = Q(n'°%b 2+€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Lecture 3, 25.02.2025

Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% 2—<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'°8s2), then T(n) = ©(n'°¢b2? log n)

> If f(n) = Q(n'°%b 2+€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn
> f(n)=0(n) and a= b =2 so log,(a) = 1 and f(n) = O(n'°&:(2)).

Lecture 3, 25.02.2025

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Let a>1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by

the recurrence
T(n) = aT(n/b) + f(n).

Then, T(n) has the following asymptotic bounds
If f(n) = O(n'°82=<) for some constant e > 0, then T(n) = ©(n°¢s2)
If f(n) = ©(n'°8b2), then T(n) = ©(n'°%? log n)

If f(n) = Q(n'°8>3*€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) =c and T(n) =2T(n/2) + cn
f(n) = O(n) and a = b =2 so log,(a) = 1 and f(n) = O(n'°e:(2)).
By Master theorem, we have T(n) = ©(nlogn) :) y
A

> Divide-and-conquer simple but powerful algorithmic paradigm

Lecture 3, 25.02.2025

> Divide-and-conquer simple but powerful algorithmic paradigm

> Solving the recurrence for merge sort shows that it runs in time
©(nlogn), i.e., much faster than Insertion sort for large instances

Lecture 3, 25.02.2025

> Divide-and-conquer simple but powerful algorithmic paradigm

> Solving the recurrence for merge sort shows that it runs in time
©(nlogn), i.e., much faster than Insertion sort for large instances

> For small instances insertion sort can still be faster

Lecture 3, 25.02.2025

v

Divide-and-conquer simple but powerful algorithmic paradigm

v

Solving the recurrence for merge sort shows that it runs in time
©(nlogn), i.e., much faster than Insertion sort for large instances

v

For small instances insertion sort can still be faster

v

Solving recurrences fun but delicate

Lecture 3, 25.02.2025

