
Algorithms: Divide-and-Conquer (Merge-Sort)

Alessandro Chiesa, Ola Svensson

School of Computer and Communication Sciences

Lecture 3, 25.02.2025



Recall Last Lecture: Loop Invariant
Often used for proof of correctness in presence of loops

Loop invariant = “a statement that is satisfied during the loop”
Ex: At the start of each iteration ans = (i − 1) ∗ i/2

Need to verify (similar to induction)

Initialization: True at the beginning of the 1st iteration of the loop

Maintenance: If it is true before an iteration of the loop, it remains true
before the next iteration.

Termination: When the loop terminates, the invariant — usually along
with the reason that the loop terminated — gives us a useful property
that helps show that the algorithm is correct.
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CalculateSum(n):
1. ans = 0
2. for i = 1, 2, . . . , n
3. ans = ans + i
4. return ans



Recall Last Lecture: Loop Invariant
The difficulty is often to come up with the right loop invariant
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Recall Last Lecture: Loop Invariant
The difficulty is often to come up with the right loop invariant

Loop invariant:

At the start of each iteration of the “outer” for loop – the loop
indexed by j– the subarrary A[1 . . . , j − 1] consists of the elements
originally in A[1, . . . , j − 1] but in sorted order.
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Recall Last Lecture: Loop Invariant
The difficulty is often to come up with the right loop invariant

Linear-Search(A,v)
1 for i ← 1 to length(A)
2 if A[i] = v then
3 return i
4 return NIL
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Recall Last Lecture: Loop Invariant
The difficulty is often to come up with the right loop invariant

Linear-Search(A,v)
1 for i ← 1 to length(A)
2 if A[i] = v then
3 return i
4 return NIL

Loop invariant:

At the start of each iteration of the for loop we have A[j] , v for all
j < i .
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Recall Last Lecture: Time Analysis
Random-access machine (RAM) model
▶ Instructions are executed one after another

▶ Simplification basic instructions take constant (O(1)) time
▶ Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
▶ Data movement: load, store, copy.
▶ Control: conditional/unconditional branch, subroutine call and return

Running time: on a particular input, it is the number of primitive
operations (steps) executed

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Order of growth: Focus on the important features
▶ Drop lower-order terms
▶ Ignore the constant coefficient in the leading term

Lecture 3, 25.02.2025



Recall Last Lecture: Analysis of insertion sort
number of times
line executed
based on the
value of j

Worst case: The array is in reverse sorted

T (n) = c1n + c2(n − 1) + c4(n − 1) + c5
n(n + 1) − 2

2

+ (c6 + c7)n · (n − 1)
2 + c8(n − 1) = Θ(n2)
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DIVIDE-AND-CONQUER
Merge Sort
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DIVIDE-AND-CONQUER
Merge Sort
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Divide-and-Conquer
Powerful algorithmic approach:

recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Combine the subproblem solutions to give a solution to the original
problem
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Divide-and-Conquer
Powerful algorithmic approach:
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Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6
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Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

5 2

Lecture 3, 25.02.2025



Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

5 2 4 7
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Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

5 2 4 7 1 3
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Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide
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Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

5 2 4 7 1 3 2 6

2 5 4 7 1 3 2 6
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Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

5 2 4 7 1 3 2 6

2 4 5 7

merge

1 2 3 6

merge
2 5 4 7 1 3 2 6
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Merge Sort = D & C applied to sorting
Example ⟨5, 2, 4, 7, 1, 3, 2, 6⟩

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6divide

5 2 4 7divide 1 3 2 6divide

5 2 4 7 1 3 2 6

1 2 2 3 4 5 6 7

merge
2 4 5 7

merge

1 2 3 6

merge
2 5 4 7 1 3 2 6
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Merge sort
To sort A[p . . . r ]:

Divide by splitting into two subarrays A[p . . . q] and
A[q + 1, . . . , r ], where q is the halfway point of A[p . . . r ]

Conquer by recursively sorting the two subarrays A[p . . . q] and
A[q + 1, . . . r ]

Combine by merging the two sorted subarrays A[p . . . q] and
A[q + 1, . . . , r ] to produce a singe sorted
subarray A[p . . . r ]
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Merging
What remains is the merge procedure to solve the “merge” problem:

Definition
INPUT: Array A and indices p ≤ q < r such that subarrays

A[p . . . q], A[q + 1 . . . r ] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in A[p . . . r ].

Example:
2 4 5 7 1 2 3 6
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Merging
What remains is the merge procedure to solve the “merge” problem:

Definition
INPUT: Array A and indices p ≤ q < r such that subarrays

A[p . . . q], A[q + 1 . . . r ] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in A[p . . . r ].

Example:
2 4 5 7 1 2 3 6

1 2 2 3 4 5 6 7
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Correctness of Merge-Sort
Assuming merge is correct

Theorem
Assuming that the implementation of the merge procedure is correct,
merge-sort(A,p,r) correctly sorts the numbers in A[p . . . r ]

Proof by induction on n = r − p

Base case n = 0: In this case r = p so A[p . . . r ] is trivially sorted.

Inductive case: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

▶ By induction hypothesis Merge-Sort(A, p, q) and
Merge-Sort(A, q+1, r) successfully sort the two subarrays.

▶ Therefore a correct merge procedure will successfully sort A[p . . . q]
as required.

. . . . . .
p rq
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Correctness of Merge-Sort
Assuming merge is correct

Theorem
Assuming that the implementation of the merge procedure is correct,
merge-sort(A,p,r) correctly sorts the numbers in A[p . . . r ]

Proof by induction on n = r − p
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as required.
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Correctness of Merge-Sort
Assuming merge is correct

Theorem
Assuming that the implementation of the merge procedure is correct,
merge-sort(A,p,r) correctly sorts the numbers in A[p . . . r ]

Proof by induction on n = r − p

Base case n = 0: In this case r = p so A[p . . . r ] is trivially sorted.

Inductive case: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

▶ By induction hypothesis Merge-Sort(A, p, q) and
Merge-Sort(A, q+1, r) successfully sort the two subarrays.

▶ Therefore a correct merge procedure will successfully sort A[p . . . q]
as required.

1 2 2 3 4 5 6 7. . . . . .
p rq
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Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

7542 6321
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Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

7542 632

1
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Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

7542 63

1 2
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Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

754 63

1 2 2

Lecture 3, 25.02.2025



Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

754 6

1 2 2 3
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Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

75 6

1 2 2 3 4
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Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

7 6

1 2 2 3 4 5
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Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile

7

1 2 2 3 4 5 6
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Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile
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Idea behind linear-time merging
Think of two pile of cards that are placed face up
▶ Basic step: pick the smaller of the two cards and place it in the

output pile
▶ There are ≤ n basic steps, since each basic step removes one card

from the input piles, and we started with n cards in the input pile
▶ Therefore the procedure should take θ(n) time

1 2 2 3 4 5 6 7
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Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞7542 ∞6321
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Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)
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1 2 2 3
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Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞75 ∞6

1 2 2 3 4
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Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞7 ∞6

1 2 2 3 4 5
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Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
▶ Stop once we have performed n = r − p + 1 basic steps

(picked n cards)

∞7 ∞

1 2 2 3 4 5 6
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Implementation Simplification
Instead of checking whether a pile is empty:
▶ Put in the bottom of each input pile a special sentinel card of

value ∞
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Merging Algorithm

A:

A[p] A[q] A[r ]

2 4 5 7 1 2 3 6
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A[p] A[q] A[r ]

2 4 5 7 1 2 3 6

L: 2 4 5 7 ∞ R: 1 2 3 6 ∞
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Merging Algorithm

A:
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Merging Algorithm

▶ Runtime analysis?

Merge runs in time Θ(n) where n is the number of elements in the
subarray, i.e.,

n = r − p + 1
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Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
▶ Let T (n) = “running time on a problem of size n”
▶ If n is small enough say n ≤ c for some constant c then

T (n) = Θ(1) (by brute force)

▶ Otherwise, suppose we divide into a sub problems each of size n/b.
▶ Let D(n) be the time to divide and let C(n) the time to combine

solutions.
▶ We get the recurrence

T (n) =
{

Θ(1) if n ≤ c,

aT (n/b) + D(n) + C(n) otherwise.
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▶ Let D(n) be the time to divide and let C(n) the time to combine

solutions.
▶ We get the recurrence

T (n) =
{

Θ(1) if n ≤ c,

aT (n/b) + D(n) + C(n) otherwise.
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Analysis of Merge Sort

Divide: takes constant time, i.e., D(n) = Θ(1)

Conquer: recursively solve two subproblems, each of size
n/2 ⇒ 2T (n/2).

Combine: Merge on an n-element subarray takes Θ(n) time
⇒ C(n) = Θ(n).

Recurrence for merge sort running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise.
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Comparing the Two Sorting Algorithms

Algorithm worst-case running time in-place
Insertion Sort Θ(n2)

Merge Sort Θ(n log n)

▶ A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)

▶ Insertion sort is incremental: having sorted the subarray A[1 . . . j − 1], we
inserted the single element A[j] into its proper place, yielding the sorted
subarray A[1 . . . j].

▶ Merge sort is divide-and-conquer: break the problem into smaller
subproblems and then combine the solutions to the subproblems
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Analysing Recurrences

As an example, we shall consider the following recurrence

T (n) =
{

c if n = 1,

2T (n/2) + c · n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
merge-sort by selecting c sufficiently large and small, respectively.

We shall solve recurrences by using three techniques:
▶ The substitution method
▶ Recursion trees
▶ Master method
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The substitution method
▶ Guess the form of the solution
▶ Use mathematical induction to find the constants and show that

the solution works.

T (n) = 2T (n/2) + c · n
= 2(2T (n/4) + c · n/2) + c · n = 4T (n/4) + 2 · cn
= 4(2T (n/8) + c · n/4) + 2 · cn = 8T (n/8) + 3 · cn

...

Hmm it seems like

= 2kT (n/2k) + k · cn

A qualified guess is that T (n) = Θ(n log n)
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The substitution method: proof of guess

Upper bound
There exists a constant a > 0 such that T (n) ≤ a · n log n for all n ≥ 2

Proof by induction on n

Base cases: For any constant n ∈ {2, 3, 4}, T (n) has a constant value,
selecting a larger than this value will satisfy the base cases when
n ∈ {2, 3, 4}.

Inductive step: Assume statement true ∀n ∈ {2, 3, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≤ 2 · an
2 log(n/2) + c · n = a · n log(n/2) + cn

= a · n log n − an + cn
≤ a · n log n (if we select a ≥ c)

We can thus select a to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = O(n log n)
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The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T (n) ≥ b · n log n for all n ≥ 0

Proof by induction on n

Base case: For n = 1, T (n) = c and b · n log n = 0 so the base case is
satisfied for any b.

Inductive step: Assume statement true ∀n ∈ {0, 1, . . . , k − 1} and prove the statement for n = k.

T (n) = 2T (n/2) + cn

≥ 2 · bn
2 log(n/2) + c · n = b · n log(n/2) + cn

= b · n log n − bn + cn
≥ b · n log n (if we select b ≤ c)

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = Ω(n log n)
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≥ b · n log n (if we select b ≤ c)

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = Ω(n log n)
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Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T (n) = 4T (n/4) + n, that
T (n) = O(n):

T (n) ≤ 4(c(n/4)) + n
≤ cn + n = O(n) wrong!

Because we haven’t proven the exact form of our inductive hypothesis
(which is that T (n) ≤ cn), this proof is false
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Recursion trees

Another way to generate a guess. Then verify by substitution method.

▶ Each node corresponds to the cost of a subproblem

▶ We sum the costs within each level of the tree to obtain a set of
per-level costs,

▶ then we sum all the per-level costs to determine the total cost of all
levels of the recursion.

Lecture 3, 25.02.2025



Recursion trees
Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn

Qualified guess: T (n) = cn log2 n = Θ(n log n)
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Recursion trees
Another interesting example: T (n) = T (n/3) + T (2n/3) + cn

▶ There are log3 n full levels and after log3/2 n levels the problem size
is down to 1.

▶ Each level contributes ≈ cn

Qualified guess: exist positive constants a, b so that
a · n log3(n) ≤ T (n) ≤ b · n log3/2 n ⇒ T (n) = Θ(n log n)
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Master method
Used to black-box solve recurrences of the form T (n) = aT (n/b) + f (n)

Theorem (Master Theorem)
Let a ≥ 1 and b > 1 be constants, let T (n) be defined on the nonnegative integers by
the recurrence

T (n) = aT (n/b) + f (n).

Then, T (n) has the following asymptotic bounds

▶ If f (n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a)

▶ If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)

▶ If f (n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if a · f (n/b) ≤ c · f (n) for
some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n))

Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn
▶ f (n) = O(n) and a = b = 2 so logb(a) = 1 and f (n) = Θ(nlogb(a)).
▶ By Master theorem, we have T (n) = Θ(n log n) :)
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Summary

▶ Divide-and-conquer simple but powerful algorithmic paradigm

▶ Solving the recurrence for merge sort shows that it runs in time
Θ(n log n), i.e., much faster than Insertion sort for large instances

▶ For small instances insertion sort can still be faster

▶ Solving recurrences fun but delicate
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